Instytut Badawczy Dróg i Mostów Zakład Technologii Nawierzchni Pracownia Lepiszczy Bitumicznych

SPRAWOZDANIE

Temat TN-248

Weryfikacja zależności między wartościami modułu sztywności uzyskanego różnymi metodami laboratoryjnymi według PN-EN 12697-26

Kierownik Zakładu TN:

prof. dr hab. inż. Dariusz SYBILSKI

Zespół:

prof. dr hab. inż. Dariusz Sybilski dr inż. Wojciech Bańkowski mgr inż. Renata Horodecka mgr inż. Andrzej Wróbel Krzysztof Mirski Technicy: Teresa Gawenda Jadwiga Migdalska Tomasz Michalski Dariusz Jasiński

Spis treści

1.	Podstawa pracy	4
2.	Cel pracy	4
3.	Program pracy	4
4.	Metodyka badań mieszanki mineralno-asfaltowej	5
4.1.	Odporność na działanie wody	5
4.2.	Metoda rozciągania pośredniego ITT	6
4.3.	Metoda belki czteropunktowo-zginanej 4PB	8
4.4.	Metoda ściskania - rozciągania TC	10
5.	Materiały do badań oraz podstawowe badania materiałów wyjściowych	11
5.1.	Lepiszcza	11
5.2.	Materiały kamienne	11
6.	Projekty mieszanek mineralno-asfaltowych	12
6.1.	ACWMS 11 z asfaltami 20/30, DE30B (Rec. TN/08/1)	14
6.2.	ACWMS 16 z asfaltami 20/30, DE30B (Rec. TN/08/2)	18
6.3.	AC 16 P z asfaltami 35/50; 50/70, DE30B (Rec. TN/08/3)	22
6.4.	AC 22 P z asfaltami 35/50; 50/70, DE30B (Rec. TN/08/4)	26
6.5.	AC 16 W z asfaltami 35/50; 50/70; DE 30B (Rec. TN/08/5)	30
6.6.	AC 22 W z asfaltami 35/50; 50/70; DE 30B (Rec. TN/08/6)	34
7.	Wyniki badań sztywności	38
7.1.	Metoda rozciągania pośredniego ITT (Zadanie 3)	38
7.2.	Metoda belki czteropunktowo-zginanej 4PB (Zadanie 4)	3
7.3.	Metoda ściskania rozciągania TC (Zadanie 5)	20
8.	Ocena porównawcza uzyskanych wyników w odniesieniu do metody e	empirycznej
(Zad	anie 7)	31
8.1.	Wybór metody empirycznej	31
8.2.	Wyniki obliczeń	31
8.3.	Analiza porównawcza wyników badań uzyskanych różnymi metodami	36
8.3.1	. Porównanie wyników badań metodą ITT i TC	36
8.3.2	2. Porównanie wyników badań metodą ITT i 4PB	43
8.3.3	 Porównanie wyników badań metodą TC i 4PB 	50
8.4.	Porównanie wyników badań z wynikami obliczeń empirycznych	55
8.4.1	Metoda rozciągania pośredniego ITT	55

8.4.2	2.	Metoda ściskania-rozciągania TC	58
8.4.3	3.	Metoda belki czteropunktowo zginanej 4PB	64
8.4.4		Analiza porównawcza wyników badań i obliczeń empirycznych	71
9.	Po	dsumowanie	72
10.	Lite	eratura	74

1. Podstawa pracy

Badania wykonano na podstawie umowy nr 2194/2008 (temat TN-248) z dnia 11.08.2008 zawartej pomiędzy Generalną Dyrekcją Dróg Krajowych i Autostrad w Warszawie, a Instytutem Badawczym Dróg i Mostów w Warszawie.

2. Cel pracy

Celem podjęcia tematu jest weryfikacja zależności pomiędzy modułami sztywności uzyskanymi wg różnych metod badawczych, co pozwoli na zaproponowanie wymagań do projektowania funkcjonalnego wg innych metod badawczych. Moduł sztywności jest bardzo ważną właściwością mieszanki mineralno-asfaltowej, szczególnie w kontekście wprowadzenia możliwości projektowania składu metodą funkcjonalną, co zostało wprowadzone w WT-2 Nawierzchnie Asfaltowe – 2008, które stanowią krajowy dokument aplikacyjny do norm europejskich z serii 13108. W obecnej wersji Wytycznych zaproponowano wymagania wg metody belki czteropunktowo –zginanej 4PB. Normy europejskie dopuszczają też inne metody badań, jak np. ściskanie-rozciąganie TC, rozciąganie pośrednie ITT. Są to metody nieco prostsze niż 4PB, a szczególnie w przypadku ITT wymagają mniej zaawansowanego i mniej kosztownego sprzętu, który jest dostępny w wielu laboratoriach drogowych.

Praca ma znaczenie szczególnie istotne w związku z wprowadzeniem do stosowania norm PN-EN oraz w rozwoju funkcjonalnej metody projektowania mieszanek mineralnoasfaltowych.

3. Program pracy

<u>Etap I</u>

<u>Zadanie 1</u> Zgromadzenie materiałów do badań (lepiszcza, kruszywa)

<u>Zadanie 2</u>

Opracowanie składów mieszanek mineralno-asfaltowych wraz z badaniami podstawowymi

Przewiduje się opracowanie recept na następujące mieszanki mineralno-asfaltowe:

- BAWMS 11 z asfaltami 20/30, DE30B
- BAWMS 16 z asfaltami 20/30, DE30B
- AC 16 P (beton asfaltowy do podbudowy) z asfaltami 35/50; 50/70, DE30B
- AC 22 P (beton asfaltowy do podbudowy) z asfaltami 35/50; 50/70, DE30B
- AC 16 W (beton asfaltowy do wiążącej) z asfaltami 35/50; 50/70; DE 30B
- AC 16 W (beton asfaltowy do wiążącej) z asfaltami 35/50; 50/70; DE 30B

<u>Zadanie 3</u> Badanie modułu sztywności metodą ITT wg PN-EN 12697-26

Zadanie 4

Badanie modułu sztywności metodą 4PB wg PN-EN 12697-26

<u>Etap II</u>

<u>Zadanie 5</u> Badanie modułu sztywności metodą TC wg PN-EN 12697-26

Zadanie 6

Analiza uzyskanych wyników

<u>Zadanie 7</u>

Ocena porównawcza uzyskanych wyników w odniesieniu do znanych metod empirycznych

<u>Zadanie 8</u>

Opracowanie sprawozdania końcowego

4. Metodyka badań mieszanki mineralno-asfaltowej

W ramach niniejszej pracy zostały oznaczone następujące właściwości badanej mieszanki:

Gęstość objętościowa p_b (dawniej gęstość strukturalna bądź pozorna) próbek asfaltowych

oznaczono wg normy PN-EN 12697-6:2008 [1],

Gęstość ρ_m (dawniej gęstość objętościowa bądź właściwa) próbek asfaltowych oznaczono

w piknometrze z użyciem czterochloroetylenu wg normy PN-EN 12697-5:2008 [2],

Wolną przestrzeń V_m w zagęszczonej mieszance mineralno-asfaltowej obliczono zgodnie

z normą PN-EN 12697-8:2005 [3],

Wolną przestrzeń P_p , w zagęszczonej mieszance mineralno-asfaltowej obliczono wg równania 1:

$$P_p = \frac{\rho_m - \rho_b}{\rho_m} \times 100, \ \% \ (V/V) \qquad \text{Równanie 1}$$

 ρ_m - gęstość mieszanki mineralno-asfaltowej, g/cm³,

 ρ_b - gęstość objętościowa mieszanki mineralno-asfaltowej, g/cm³.

Zagęszczenie sprawdzono z receptą na próbkach sporządzonych w ubijaku Marshalla stosując 2 x 75 uderzeń na stronę.

4.1. Odporność na działanie wody

Badanie odporności mieszanki ma działanie wody wykonano wg PN-EN 12697-12 [4]. Badanie wytrzymałości na rozciąganie pośrednie przeprowadzono na próbkach o średnicy 100 mm wg PN-EN 12697-23 [5]. Badanie wykonuje się na próbkach suchych i nasączonych wodą, co pozwala na określenie odporności mieszanki na działanie wody. Próbki do badania wytrzymałości na rozciąganie pośrednie zostały zagęszczone ubijakiem Marshalla po 35 uderzeń z każdej ich strony. Po zagęszczeniu próbki pozostawiono w formach na 24 godziny w temperaturze pokojowej, tj. około 20°C. Po wyjęciu z form, próbki suche przechowywane były w temperaturze pokojowej, natomiast próbki mokre przetrzymywano w łaźni wodnej o temperaturze 40°C przez 72 godziny. Dodatkowo w przypadku próbek mokrych zastosowano jeden cykl zamrażania (16 godz. w temp. -18°C). Po tym okresie wszystkie próbki doprowadzono do temperatury badania 15°C, a następnie wykonano badanie wytrzymałości na rozciąganie pośrednie w opisany poniżej sposób.

Oznaczenie wytrzymałości na rozciąganie pośrednie przeprowadzono w temperaturze 15°C. Badanie to polega na ściskaniu próbek \emptyset 100±3 mm, po tworzącej walca z prędkością 50 mm/min., przy czym nacisk jest przekazany przez listwy o szerokości 12 mm i o krzywiźnie równej promieniowi próbki.

Wytrzymałość pojedynczej próbki na rozciąganie pośrednie oblicza się wg równania 2:

$$TTS_{S(N)} = \frac{P}{\Pi rh}$$
 Równanie 2

w którym:

ITS _{S (N)}	wytrzymałość na rozciąganie pośrednie, [kPa]
Р	maksymalna siła niszcząca, [kN]
h	wysokość próbki, [cm]
r	promień próbki, [cm]

Natomiast odporność na działanie wody (wskaźnik zmiany wytrzymałości) określono na podstawie wzoru 3:

$$ITSR = 100 \times \frac{ITS_N}{ITS_S}$$
 Równanie 3

w którym:

ITSR	wskaźnik zmiany wytrzymałości,
ITS _N	wytrzymałość na rozciąganie pośrednie próbek mokrych, [kPa]
ITSs	wytrzymałość na rozciąganie pośrednie próbek suchych, [kPa]

Im wskaźnik ITSR jest bliższy wartości 100 %, tym mieszanka jest bardziej odporna na wpływ czynników zewnętrznych.

4.2. Metoda rozciągania pośredniego ITT

Metoda rozciągania pośredniego (Indirect Tensile Test – ITT) opisana jest w normie PN-EN 12697-26 [6] w załączniku C. Badanie prowadzi się na próbkach walcowych o średnicy od 100 do 200 mm przygotowanych w laboratorium lub wyciętych z nawierzchni. Próbki umieszczane są w szczękach maszyny wytrzymałościowej. Obciążenie pulsacyjne przykładane jest w kierunku prostopadłym do powierzchni bocznej walca. Widok próbki w badaniu rozciągania pośredniego przedstawiono na rysunku 1.

Legenda

1	Siłownik	6	Regulacja czujników LVDT
2	Stalowa rama obciążająca	7	Rama do montowania LVDT
3	Czujnik siły	8	Dolny uchwyt obciążający

- Górny uchwyt obciążający 4
- 5 Próbka

- įcy
- Zacisk do osiowania LVDT 9

Rysunek 1 Schemat umocowania próbki w badaniu ITT

W trakcie badania przeprowadzany jest pomiar i rejestracja przemieszczeń poziomych oraz siły. Moduł sztywności obliczany jest wg następującego wzoru:

$$S_m - \frac{F \times (\nu + 0,27)}{(z \times h)}$$
 (Równanie 4)

w którym:

S_m - moduł sztywności, (MPa);

F siła (N);

- z to amplituda poziomej deformacji, (mm);
- h to średnia grubość próbki, (mm);
- v współczynnik Poissona.

Do celów niniejszej pracy przygotowano w laboratorium po 5 próbek cylindrycznych o średnicy 100 mm z każdej mieszanki. Cztery próbki z mieszanki zostały wybrane do badań. Badania przeprowadzono w temperaturze 0, 10 i 20°C (dodatkowo wybrane mieszanki w temperaturze 30°C) we współpracy z Politechniką Lubelską.

4.3. Metoda belki czteropunktowo-zginanej 4PB

Badanie modułu sztywności przeprowadzono zgodnie z normą PN-EN 12697-26 [6] załącznik B. Polega ona na cyklicznym zginaniu próbki belkowej umieszczonym w aparacie zmęczeniowym przy stałej amplitudzie odkształcenia (rysunek 2). Podczas badania rejestrowana jest siła, ugięcie belki, kąt przesunięcia fazowego, liczba cykli, obliczany jest moduł sztywności oraz naprężenia i odkształcenia rozciągające. Warunki badania zespolonego modułu sztywności przyjęto następujące:

- temperatura: -10, 0, 10, 20, 30°C,
- częstotliwość: 0,2, 1, 2, 5, 8, 10, 20, 30 Hz,
- odkształcenie: 50 μmm/mm.

Wynikiem badania jest moduł sztywności i kąt przesunięcia fazowego. Zespolony moduł sztywności E* jest liczbą zespoloną, którą można opisać równaniem:

$$E^* = E' + iE''$$
 Równanie 5

w którym:

$$E' = |E^*| \cos \varphi$$
 Równanie 6

$$E'' = |E^*| \sin \varphi$$
 Równanie 7

E' – część rzeczywista (sprężysta),

E" – część urojona (lepka).

Rysunek 2 Schemat umocowania próbki w badaniu sztywności metodą 4PB

 $tg \varphi = \frac{E''}{E'}$

Obie składowe modułu zespolonego związane są wartością kąta przesunięcia fazowego wg równania:

Równanie 8

w którym:

 ϕ - kąt przesunięcia fazowego, °.

Moduł sztywności jest wartością bezwzględną zespolonego modułu sztywności. Kąt przesunięcia fazowego stanowi informację o przewadze właściwości lepkich lub sprężystych w materiale: niższa jego wartość tym materiał bardziej sprężysty. Wartość kąta przesunięcia fazowego może wynosić od 0 (stal) do 90° (ciecze).

Kąt przesunięcia fazowego wynika z faktu, iż w ciałach lepkosprężystych odkształcenie pojawia się z pewnym opóźnieniem w stosunku do obciążenia (rys.7). Jako kryterium oceny lepkosprężystych właściwości mieszanek mineralno-asfaltowych przyjmuje się wartość tangensa kąta przesunięcia fazowego:

- w materiałach lepkich φ =90°, tg φ =∞,
- w materiałach sprężystych $\varphi = 0^{\circ}$, tg $\varphi = 0$,
- w materiałach lepkosprężystych 0°< φ < 90°, 0°< tg φ < ∞.

Próbki belkowe zostały wycięte z płyt przygotowanych w laboratorium.

Rysunek 3 Ilustracja kąta przesunięcia fazowego

4.4. Metoda ściskania - rozciągania TC

Badanie modułu sztywności przeprowadzono zgodnie z normą PN-EN 12697-26 [6] załącznik D. Polega ona na cyklicznym obciążaniu próbki walcowej umieszczonej w maszynie wytrzymałościowej przy stałej amplitudzie odkształcenia (rysunek 4). Obciążenie przykładane jest w kierunku prostopadłym do podstawy próbki. Podczas badania rejestrowana jest siła, odkształcenie, kąt przesunięcia fazowego, liczba cykli, obliczany jest moduł sztywności oraz naprężenia i odkształcenia rozciągające. Warunki badania zespolonego modułu sztywności przyjęto następujące:

- temperatura: -10, 0, 10, 20, 30°C,
- częstotliwość: 0,1, 0,3, 1, 3, 10, 20, Hz,
- odkształcenie: 12-25 μmm/mm.

Próbki do badań zostały wycięte z większych próbek cylindrycznych przygotowanych w prasie żyratorowej.

Rysunek 4 Umocowanie próbki w badaniu sztywności metodą TC

5. Materiały do badań oraz podstawowe badania materiałów wyjściowych

Lepiszcze Asfalt zwykły 20/30 LOTOS Asfalt Asfalt zwykły 35/50 LOTOS Asfalt

Asfalt zwykły 50/70 LOTOS Asfalt

Asfalt modyfikowany MODBIT 30B

Materiały kamienne - kruszywo

Mączka wapienna

Bazalt 2/5, 5/8, 8/11, 11/16, 16/22 [mm]

Granit 0/2, [mm]

Inne

Środek adhezyjny, Wetfix BE z firmy Akzo Nobel

5.1. Lepiszcza

Do wykonania mieszanek mineralno-asfaltowych typu użyto asfaltów zwykłych 20/30, 35/50 i 50/70 oraz asfalt modyfikowany DE30B z firmy LOTOS Asfalt. W tablicy 1 podane zostały podstawowe właściwości lepiszczy przewidzianych do badanych mieszanek.

	RODZAJ ASFALTU			
WŁAŚCIWOŚCI	20/30	35/50	50/70	MODBIT 30B
Penetracja w 25°C, 0,1 mm	24	42	67	33
Temperatura mięknienia PiK, °C	63,0	53,2	48	71,4
Temperatura łamliwości wg Fraassa °C	-13	-20	-22	-23

5.2. Materiały kamienne

W tablicy 2 zostały przedstawione analizy sitowe poszczególnych frakcji kruszyw oznaczone w laboratorium IBDiM, które zostały zastosowane do opracowania składów mieszanek mineralno-asfaltowych.

Tablica 2 Analizy sitowe kruszyw

Sito #.	Mączka wapienna	Granit 0/2 mm	Bazalt 2/5 mm	Bazalt 5/8 mm	Bazalt 8/11 mm	Bazalt 11/16 mm	Bazalt 16/22 mm
mm	% (m/m)	% (m/m)	% (m/m)	% (m/m)	% (m/m	% (m/m)	% (m/m)
63,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
31,5	0,0	0,0	0,0	0,0	0,0	0,0	0,0
22,4	0,0	0,0	0,0	0,0	0,0	0,0	1,8
16,0	0,0	0,0	0,0	0,0	0,0	4,9	79,3
11,2	0,0	0,0	0,0	0,0	6,6	81,3	17,2
8,0	0,0	0,0	0,0	3,3	68,7	12,9	1,2
5,6	0,0	0,0	1,6	71,9	20,5	0,6	0,3
2,0	0,4	9,8	94,4	24,3	2,8	0,1	0,0
0,125	0,8	69,5	3,8	0,3	0,9	0,0	0,0
0,063	10,8	13,5	0,1	0,1	0,2	0,1	0,1
<0,063	88,0	7,2	0,1	0,1	0,3	0,1	0,1
	100,0	100,0	100,0	100,0	100,0	100,0	100,0

6. Projekty mieszanek mineralno-asfaltowych

W ramach pracy opracowano składy mieszanek mineralno-asfaltowych przy uwzględnieniu różnych rodzajów lepiszczy, tj. 20/30, DE30B, 35/50 i 50/70.

W rezultacie opracowano składy na następujące mieszanki mineralno-asfaltowe:

- ACWMS 11 z asfaltami 20/30, DE30B
- BAWMS 16 z asfaltami 20/30, DE30B
- AC 16 P (beton asfaltowy do podbudowy) z asfaltami 35/50; 50/70, DE30B
- AC 22 P (beton asfaltowy do podbudowy) z asfaltami 35/50; 50/70, DE30B
- AC 16 W (beton asfaltowy do wiążącej) z asfaltami 35/50; 50/70; DE30B
- AC 16 W (beton asfaltowy do wiążącej) z asfaltami 35/50; 50/70; DE30B

Przyjęte oznakowanie poszczególnych mieszanek mineralno-asfaltowych przedstawione zostało w tablicy 3.

Tablica 3 Oznakowanie mieszanek mineralno-asfaltowych

Lp.	Rodzaj mieszanki MA	Rodzaj zastosowanego lepiszcza	Przyjęte oznakowanie	Uwagi: (oznakowanie pomocnicze)
1	2	3	4	5
1		DE30B	TN/08/ 1	ACWMS11-30B
		20/30	TN/08/ 1A	ACWMS11-20/30
2	ACWMS 16	DE30B	TN/08/ 2	ACWMS16-30B
L	ACTING TO	20/30	TN/08/ 2A	ACWMS16-20/30
		DE30B	TN/08/ 3	AC16P-30B
3	AC 16 P	35/50	TN/08/ 3A	AC16P-35/50
		50/70	TN/08/ 3B	AC16P-50/70
		DE30B	TN/08/ 4	AC22P-30B
4	AC 22 P	35/50	TN/08/ 4A	AC22P-35/50
		50/70	TN/08/ 4B	AC22P-50/70
		DE30B	TN/08/ 5	AC16W-30B
5	AC 16 W	35/50	TN/08/ 5A	AC16W-35/50
		50/70	TN/08/ 5B	AC16W-50/70
		DE30B	TN/08/ 6	AC22W-30B
6	AC 16 W	35/50	TN/08/ 6A	AC22W-35/50
		50/70	TN/08/ 6B	AC22W-50/70

Projekt mieszanek mineralno-asfaltowych wykonano wg WT-2 Nawierzchnie Asfaltowe – 2008 [7]. Szczegółowe składy MMA oraz ich podstawowe parametry, przedstawiono w pkt. od 6.1 do 6.6 niniejszego opracowania.

6.1. ACWMS 11 z asfaltami 20/30, DE30B (Rec. TN/08/1)

Recepta nr TN/08/1 (TN/08/1A)

Beton asfaltowy o wysokim module sztywności ACWMS 11 (KR3- KR6)

o uziarnieniu 0/11 mm do wykonania warstwy wiążącej

Informacje ogólne

Data opracowania: 25.11.2008 r. Przeznaczenie: temat badawczy GDDKiA (TN - 248), kategoria ruchu KR5-KR6 Podstawa projektu: WT-2 Nawierzchnie Asfaltowe – 2008

Tablica 1. 1Składniki mieszanki

Lp.	Symbol	Rodzaj
1	Mączka wapienna	wypełniacz
2	Granit 0/2 mm	kr. dr. gran.
3	Bazalt 2/5 mm	Grys
4	Bazalt 5/8 mm	Grys
5	Bazalt 8/11 mm	Grys
6	MODBIT 30B (TN/08/1)	Polimeroasfalt z LOTOS Asfalt – Gdańsk
7	Asfalt 20/30 (TN/08/1A)	asfalt drogowy z LOTOS Asfalt – Gdańsk
8	WETFIX BE	Środek adhezyjny z Akzo Nobel

Tablica 1. 2 Uziarnienie materiałów mineralnych

Wymiar oczek sita # [mm]	Mączka wapienna	Granit 0/2 mm	Bazalt 2/5 mm	Bazalt 5/8 mm	Bazalt 8/11 mm
16,0	0,0	0,0	0,0	0,0	0,0
11,2	0,0	0,0	0,0	0,0	6,6
8	0,0	0,0	0,0	3,3	68,7
5,6	0,0	0,0	1,6	71,9	20,5
2	0,4	9,8	94,4	24,3	2,8
0,125	0,8	69,5	3,8	0,3	0,9
0,063	10,8	13,5	0,1	0,1	0,2
<0,063	88,0	7,2	0,1	0,1	0,3
Łącznie	100	100	100	100	100

		Miaazanka	Miaazanka minaralna
Lp.	Składniki	IVIIeszanika	Wieszanka mineramo-
		mineralna, % m/m	asfaltowa, % m/m
1	Maczka wanienna	4.0	3.8
I		4,0	5,0
2	Granit 0/2 [mm]	40.0	38 04
۷		то,о	
3	Bazalt 2/5 [mm]	11.0	10.46
5	Dazait 2/3 [mm]	11,0	10,40
	Bazalt 5/8 [mm]	10.0	9.51
4	Dazait 5/6 [mm]	10,0	9,01
5	Bazalt 8/11 [mm]	35.0	33.20
5	Dazar 0/11 [mm]	55,0	55,23
6		_	
Ŭ			4.89
	Asfalt 20/30 (TN/08/1A)		-)
7	WETFIX BE	-	0,01
	Razem	100,0	100,0
		- ,	- ,

Tablica 1. 3 Skład mieszanki mineralnej (MM) i mineralno-asfaltowej (MMA)

Sito #, mm	Skład Pozostaje frakcyjny na sicie		Przechodzi przez sito	Krzywe graniczne wg WT-2, 2008 wobec ACWMS 11	
	(%)	(%)	(%)	Dolna	Górna
16	-	-	100,0	100	100
11,2		2,3	97,7	90	100
8	-	24,4	73,3	70	85
5,6	-	14,5	58,8	-	-
2	58,9	17,7	41,1	40	50
0,125	-	28,7	12,4	7	17
0,063	34,6	5,9	6,5	5	9
< 0,063	6,5	6,5	-	-	-
	100	100			

Tablica 1. 5 Zbadane właściwości mieszanki mineralno-asfaltowej ACWMS 11, o składzie optymalnym dla zawartości asfaltu Am=4,9 % m/m

		Wyniki A	Wyniki ACWMS 11		
Lp.	Właściwości	(TN/08/1)	(TN/08/1A)	wg WT-2 2008	
	Rodzaj asfaltu	MODBIT 30B	20/30		
1	Gęstość objętościowa mieszanki- mineralnej, g/cm ³	2,859	2,859	-	
2	Gęstość mieszanki mineralno-asfaltowej (dawna gęstość objętościowa), g/cm ³	2,627	2,629	-	
3	Gęstość objętościowa mieszanki mineralno-asfaltowej (dawna gęstość strukturalna), g/cm ³	2,557	2,556	-	
4	Wolna przestrzeń w mieszance mineralno-asfaltowej, %v/v	2,7	2,8	Vmin2,0 Vmax4,0	
5	Wypełnienie asfaltem wolnej przestrzeni, % v/v	82,1	81,1	-	
6	Odporność na działanie wody, przechowywanie w 40°C z jednym cyklem zamrażania, badanie w 15°C, %	96,7	91,01	ITSR ₈₀	

6.2. ACWMS 16 z asfaltami 20/30, DE30B (Rec. TN/08/**2**)

Recepta nr TN/08/2 (TN/08/2A)

Beton asfaltowy o wysokim module sztywności ACWMS 16 (KR3- KR6)

o uziarnieniu 0/16 mm do wykonania warstwy wiążącej

A. Informacje ogólne

Data opracowania: 25.11.2008 r. Przeznaczenie: temat badawczy GDDKiA (TN - 248), kategoria ruchu KR5-KR6 Podstawa projektu: WT-2 Nawierzchnie Asfaltowe – 2008 **Tablica 2. 1 Składniki mieszanki**

Lp.	Symbol	Rodzaj		
1	Mączka wapienna	wy	pełniacz	
2	Granit 0/2 mm	kr.	dr. gran.	
3	Bazalt 2/5 mm	Grys		
4	Bazalt 5/8 mm	Grys		
5	Bazalt 8/11 mm	Grys		
6	Bazalt 11/16 mm	Grys		
7	MODBIT 30B (TN/08/2)	Polimeroasfalt z LOTOS Asfalt – Gdańsk		
8	Asfalt 20/30 (TN/08/2A)	asfalt drogowy z LOTOS Asfalt – Gdańsk		
9	WETFIX BE	Środek adhezyjny	Akzo Nobel	

Tablica 2. 2 Uziarnienie materiałów mineralnych

Wymiar oczek sita # [mm]	Mączka wapienna	Granit 0/2 mm	Bazalt 2/5 mm	Bazalt 5/8 mm	Bazalt 8/11 mm	Bazalt 11/16 mm
16,0	0,0	0,0	0,0	0,0	0,0	4,9
11,2	0,0	0,0	0,0	0,0	6,6	81,3
8	0,0	0,0	0,0	3,3	68,7	12,9
5,6	0,0	0,0	1,6	71,9	20,5	0,6
2	0,4	9,8	94,4	24,3	2,8	0,1
0,125	0,8	69,5	3,8	0,3	0,9	0,0
0,063	10,8	13,5	0,1	0,1	0,2	0,1
<0,063	88,0	7,2	0,1	0,1	0,3	0,1
Łącznie	100	100	100	100	100	100

Lp.	Składniki	Mieszanka mineralna, % m/m	Mieszanka mineralno- asfaltowa, % m/m
1	Mączka wapienna	5,0	4,78
2	Granit 0/2 [mm]	36,0	34,38
3	Bazalt 2/5 [mm]	6,0	5,73
4	Bazalt 5/8 [mm]	8,0	7,64
5	Bazalt 8/11 [mm]	20,0	19,1
6	Bazalt 11/16 [mm]	25,0	23,87
7	MODBIT 30B (TN/08/2) Asfalt 20/30 (TN/08/2A)	-	4,49
8	WETFIX BE	-	0,01
	Razem	100,0	100,0

Tablica 2. 3 Skład mieszanki mineralnej (MM) i mineralno-asfaltowej (MMA)

Rysunek 2. 1 Krzywa uziarnienia i uziarnienie mieszanki mineralnej ACWMS 16 do warstwy wiążącej

Tablica	2.4	Uziarnienie	mieszanki	mineralne
rabiica	L . T	OZIAI IIICIIIC	mcszanki	millionanie

Sito #, mm	Skład Pozostaje frakcyjny na sicie		Przechodzi przez sito	Krzywe graniczne wg WT-2, 2008 wobec ACWMS 16	
	(%)	(%)	(%)	Dolna	Górna
22,4	-	-	100,0	100	100
16	-	1,2	98,8	90	100
11,2	-	21,7	77,1	70	85
8	-	17,2	59,9	-	-
5,6	-	10,1	49,8	-	-
2	61,9	11,7	38,1	35	45
0,125	0,0	25,6	12,5	7	17
0,063	31,0	5,4	7,1	5	9
< 0,063	7,1	7,1	-	-	-
	100	100			

Tablica 2. 5 Zbadane właściwości mieszanki mineralno-asfaltowej ACWMS 16, o składzie optymalnym dla zawartości asfaltu Am=4,5 % m/m

		Wyniki A	Wyniki ACWMS 16		
Lp.	Właściwości	(TN/08/2)	(TN/08/2A)	wg WT-2 2008	
	Rodzaj asfaltu	MODBIT 30B	20/30		
1	Gęstość objętościowa mieszanki- mineralnej, g/cm ³	2,872	2,872	-	
2	Gęstość mieszanki mineralno- asfaltowej (dawna gęstość objętościowa), g/cm ³	2,655	2,656	-	
3	Gęstość objętościowa mieszanki mineralno-asfaltowej (dawna gęstość strukturalna), g/cm ³	2,578	2,579	-	
4	Wolna przestrzeń w mieszance mineralno-asfaltowej, %v/v	2,9	2,9	Vmin2,0 Vmax4,0	
5	Wypełnienie asfaltem wolnej przestrzeni, % v/v	79,7	79,9		
6	Odporność na działanie wody, przechowywanie w 40°C z jednym cyklem zamrażania, badanie w 15°C, %	95,21	85,88	ITSR ₈₀	

6.3. AC 16 P z asfaltami 35/50; 50/70, DE30B (Rec. TN/08/3)

Recepta nr TN/08/3 (TN/08/3A, TN/08/3B)

Beton asfaltowy AC 16 P (KR3- KR6)

o uziarnieniu 0/16 mm do wykonania warstwy podbudowy

A. Informacje ogólne

Data opracowania: 25.11.2008 r. Przeznaczenie: temat badawczy GDDKiA (TN - 248), kategoria ruchu KR5-KR6 Podstawa projektu: WT-2 Nawierzchnie Asfaltowe 2008

Tablica 3. 1Składniki mieszanki

Lp.	Symbol	Rodzaj
1	Mączka wapienna	wypełniacz
2	Granit 0/2 mm	kr. dr. gran.
3	Bazalt 2/5 mm	Grys
4	Bazalt 5/8 mm	Grys
5	Bazalt 8/11 mm	Grys
6	Bazalt 11/16 mm	Grys
7	MODBIT 30B (TN/08/2)	Polimeroasfalt z LOTOS Asfalt – Gdańsk
8	Asfalt 35/50 (TN/08/2A)	asfalt drogowy z LOTOS Asfalt – Gdańsk
9	Asfalt 50/70 (TN/08/2B)	asfalt drogowy z LOTOS Asfalt – Gdańsk
10	WETFIX BE	Środek adhezyjny z Akzo Nobel

Tablica 3. 2 Uziarnienie materiałów mineralnych

Wymiar oczek sita # [mm]	Mączka wapienna	Granit 0/2 mm	Bazalt 2/5 mm	Bazalt 5/8 mm	Bazalt 8/11 mm	Bazalt 11/16 mm
16,0	0,0	0,0	0,0	0,0	0,0	4,9
11,2	0,0	0,0	0,0	0,0	6,6	81,3
8	0,0	0,0	0,0	3,3	68,7	12,9
5,6	0,0	0,0	1,6	71,9	20,5	0,6
2	0,4	9,8	94,4	24,3	2,8	0,1
0,125	0,8	69,5	3,8	0,3	0,9	0,0
0,063	10,8	13,5	0,1	0,1	0,2	0,1
<0,063	88,0	7,2	0,1	0,1	0,3	0,1
Łącznie	100	100	100	100	100	100

Lp.	Składniki	Mieszanka mineralna, % m/m	Mieszanka mineralno- asfaltowa, % m/m
1	Mączka wapienna	4,0	3,85
2	Granit 0/2 [mm]	25,0	24,07
3	Bazalt 2/5 [mm]	15,0	14,45
4	Bazalt 5/8 [mm]	15,0	14,45
5	Bazalt 8/11 [mm]	20,0	19,26
6	Bazalt 11/16 [mm]	21,0	20,22
7	MODBIT 30B (TN/08/3) Asfalt 35/50 (TN/08/3A) Asfalt 50/70 (TN/08/3B)	-	3,69
8	WETFIX BE	-	0,01
	Razem	100,0	100,0

Tablica 3. 3 Skład mieszanki mineralnej (MM) i mineralno-asfaltowej (MMA)

Rysunek 3. 1 Krzywa uziarnienia i uziarnienie mieszanki mineralnej AC 16 P do warstwy wiążącej

Tablica 3	3.4	Uziarnienie	mieszanki	mineralnei
i abiioa i	•••••			

Sito #, mm	Sito #, Skład Pozostaje Przecho mm (%) (%) (%) (%)		Przechodzi przez sito	Krzywe graniczne wg WT-2, 2008 wobec AC 16 P	
	(%)	(%)	(%)	Dolna	Górna
22,4	-	-	100,0	100	100
16	-	1,0	99,0	90	100
11,2	-	18,4	80,6	75	90
8	-	16,9	63,7	-	-
5,6	-	15,3	48,4	-	-
2	72,5	20,9	27,5	25	40
0,125	-	18,3	9,2	4	14
0,063	22,1	3,8	5,4	2	9
< 0,063	5,4	5,4	-	-	-
	100	100			

Tablica 3. 5 Zbadane właściwości mieszanki mineralno-asfaltowej AC 16 P, o składzie optymalnym dla zawartości asfaltu Am=3,7 % m/m

	Włościwości	Wy	Wymagania		
цр.	Właściwości	(TN/08/3)	(TN/08/3A)	(TN/08/3B)	2008 wg wr-2
	Asfalt	MODBIT 30B	35/50	50/70	
1	Gęstość objętościowa mieszanki-mineralnej, g/cm ³	2,908	2,908	2,908	-
2	Gęstość mieszanki mineralno- asfaltowej (dawna gęstość objętościowa), g/cm ³	2,720	2,724	2,726	-
3	Gęstość objętościowa mieszanki mineralno-asfaltowej (dawna gęstość strukturalna), g/cm ³	2,566	2,586	2,590	-
4	Wolna przestrzeń w mieszance mineralno-asfaltowej, %v/v	5,7	5,1	5,0	Vmin4,0 Vmax10,0
5	Wypełnienie asfaltem wolnej przestrzeni, % v/v	62,4	64,7	65,2	-
6	Odporność na działanie wody, przechowywanie w 40°C z jednym cyklem zamrażania, badanie w 15°C, %	86,84	92,29	83,00	ITSR ₇₀

6.4. AC 22 P z asfaltami 35/50; 50/70, DE30B (Rec. TN/08/4)

Recepta nr TN/08/4 (TN/08/4A, TN/08/4B)

Beton asfaltowy AC 22 P (KR3- KR6)

o uziarnieniu 0/22 mm do wykonania warstwy podbudowy

A. Informacje ogólne

Data opracowania: 25.11.2008 r. Przeznaczenie: temat badawczy GDDKiA (TN - 248), kategoria ruchu KR5-KR6 Podstawa projektu: WT-2 Nawierzchnie Asfaltowe – 2008

Tablica 4. 1Składniki mieszanki

Lp.	Symbol	Rodzaj
1	Mączka wapienna	wypełniacz
2	Granit 0/2 mm	kr. dr. gran.
3	Bazalt 2/5 mm	Grys
4	Bazalt 5/8 mm	Grys
5	Bazalt 8/11 mm	Grys
6	Bazalt 11/16 mm	Grys
7	Bazalt 16/22 mm	Grys
8	MODBIT 30B (TN/08/4)	Polimeroasfalt z LOTOS Asfalt – Gdańsk
9	Asfalt 35/50 (TN/08/4A)	asfalt drogowy z LOTOS Asfalt – Gdańsk
10	Asfalt 50/70 (TN/08/4B)	asfalt drogowy z LOTOS Asfalt – Gdańsk
11	WETFIX BE	Środek adhezyjny z Akzo Nobel

Tablica 4. 2Uziarnienie materiałów mineralnych

Wymiar oczek sita # [mm]	Mączka wapienna	Granit 0/2 mm	Bazalt 2/5 mm	Bazalt 5/8 mm	Bazalt 8/11 mm	Bazalt 11/16 mm	Bazalt 16/22 mm
22,4	0,0	0,0	0,0	0,0	0,0	0,0	1,80
16,0	0,0	0,0	0,0	0,0	0,0	4,9	79,30
11,2	0,0	0,0	0,0	0,0	6,6	81,3	17,20
8	0,0	0,0	0,0	3,3	68,7	12,9	1,20
5,6	0,0	0,0	1,6	71,9	20,5	0,6	0,30
2	0,4	9,8	94,4	24,3	2,8	0,1	0,0
0,125	0,8	69,5	3,8	0,3	0,9	0,0	0,0
0,063	10,8	13,5	0,1	0,1	0,2	0,1	0,10
<0,063	88,0	7,2	0,1	0,1	0,3	0,1	0,10
Łącznie	100	100	100	100	100	100	100

Lp.	Składniki	Mieszanka mineralna, % m/m	Mieszanka mineralno- asfaltowa, % m/m
1	Mączka wapienna	3,0	2,9
2	Granit 0/2 [mm]	28,0	27,02
3	Bazalt 2/5 [mm]	10,0	9,65
4	Bazalt 5/8 [mm]	10,0	9,65
5	Bazalt 8/11 [mm]	14,0	13,51
6	Bazalt 11/16 [mm]	15,0	14,47
7	Bazalt 16/22 [mm]	20,0	19,3
8	MODBIT 30B (TN/08/3)	-	
	Asfalt 35/50 (TN/08/3A)		3,49
	Asfalt 50/70 (TN/08/3B)		
9	WETFIX BE	-	0,01
	Razem	100,0	100,0

Tablica 4. 3Skład mieszanki mineralnej (MM) i mineralno-asfaltowej (MMA)

Rysunek 4.1 Krzywa uziarnienia i uziarnienie mieszanki mineralnej AC 22 P do warstwy podbudowy

Tablica 4	4	Uziai	rnien	ie n	niesza	anki	miner	alnei
	.	Oziai	THEI		110320			annej

Sito #, mm	Skład frakcyjny	Pozostaje na sicie	Przechodzi przez sito	Krzywe graniczne wg WT-2, 2008 wobec AC 22 P		
	(%)	(%)	(%)	Dolna	Górna	
31,5	-	-	100	100	100	
22,4	-	0,4	99,6	90	100	
16	-	16,6	83,0	75	90	
11,2	-	16,5	66,5	-	-	
8	-	12,1	54,4	-	-	
5,6	-	10,4	44	-	-	
2	71,00	15	29	25	40	
0,125	-	20,1	8,9	4	14	
0,063	24,2	4,1	4,8	2	9	
< 0,063	4,8	4,8	-	-	-	
	100	100				

 $\begin{array}{l} \textbf{Tablica 4.5 Zbadane właściwości mieszanki mineralno-asfaltowej AC 22 P, o składzie optymalnym dla zawartości asfaltu Am=3,5 % m/m \end{array}$

		Wyı	Wymagania		
Lp.	Właściwości	(TN/08/4)	(TN/08/4A)	(TN/08/4B)	wg WT-2 2008
	Rodzaj asfaltu	MODBIT 30B	35/50	50/70	
1	Gęstość objętościowa mieszanki-mineralnej, g/cm ³	2,896	2,896	2,896	-
2	Gęstość mieszanki mineralno- asfaltowej (dawna gęstość objętościowa), g/cm ³	2,718	2,721	2,723	-
3	Gęstość objętościowa mieszanki mineralno-asfaltowej (dawna gęstość strukturalna), g/cm ³	2,578	2,580	2,585	-
4	Wolna przestrzeń w mieszance mineralno-asfaltowej, %v/v	5,2	5,2	5,1	Vmin4,0 Vmax10,0
5	Wypełnienie asfaltem wolnej przestrzeni, % v/v	63,3	63,1	63,3	-
6	Odporność na działanie wody, przechowywanie w 40°C z jednym cyklem zamrażania, badanie w 15°C,%	73,27	82,7	85,35	ITSR ₇₀

6.5. AC 16 W z asfaltami 35/50; 50/70; DE 30B (Rec. TN/08/5)

Recepta nr TN/08/5 (TN/08/5A, TN/08/5B)

Beton asfaltowy AC 16 W (KR3- KR6)

o uziarnieniu 0/16 mm do wykonania warstwy wiążącej

A. Informacje ogólne

Data opracowania: 25.11.2008 r. Przeznaczenie: temat badawczy GDDKiA (TN - 248), kategoria ruchu KR5-KR6

Podstawa projektu: WT-2 Nawierzchnie Asfaltowe – 2008Tablica 5. 1 Składniki mieszanki

Lp.	Symbol	Rodzaj
1	Mączka wapienna	wypełniacz
2	Granit 0/2 mm	kr. dr. gran.
3	Bazalt 2/5 mm	Grys
4	Bazalt 5/8 mm	Grys
5	Bazalt 8/11 mm	Grys
6	Bazalt 11/16 mm	Grys
7	MODBIT 30B (TN/08/5)	Polimeroasfalt z LOTOS Asfalt – Gdańsk
8	Asfalt 35/50 (TN/08/5A)	asfalt drogowy z LOTOS Asfalt – Gdańsk
9	Asfalt 50/70 (TN/08/5B)	asfalt drogowy z LOTOS Asfalt – Gdańsk
10	WETFIX BE	Środek adhezyjny z Akzo Nobel

Tablica 5. 2 Uziarnienie materiałów mineralnych

Wymiar oczek sita # [mm]	Mączka wapienna	Granit 0/2 mm	Bazalt 2/5 mm	Bazalt 5/8 mm	Bazalt 8/11 mm	Bazalt 11/16 mm
22,4	0,0	0,0	0,0	0,0	0,0	0,0
16,0	0,0	0,0	0,0	0,0	0,0	4,9
11,2	0,0	0,0	0,0	0,0	6,6	81,3
8	0,0	0,0	0,0	3,3	68,7	12,9
5,6	0,0	0,0	1,6	71,9	20,5	0,6
2	0,4	9,8	94,4	24,3	2,8	0,1
0,125	0,8	69,5	3,8	0,3	0,9	0,0
0,063	10,8	13,5	0,1	0,1	0,2	0,1
<0,063	88,0	7,2	0,1	0,1	0,3	0,1
Łącznie	100	100	100	100	100	100

LL p.	Składniki	Mieszanka mineralna, % m/m	Mieszanka mineralno- asfaltowa, % m/m
11	Mączka wapienna	3,0	2,88
2	Granit 0/2 [mm]	25,0	23,97
33	Bazalt 2/5 [mm]	10,0	9,59
44	Bazalt 5/8 [mm]	15,0	14,39
55	Bazalt 8/11 [mm]	17,0	16,3
66	Bazalt 11/16 [mm]	30,0	28,77
77	MODBIT 30B (TN/08/3) Asfalt 35/50 (TN/08/3A) Asfalt 50/70 (TN/08/3B)	-	4,09
88	WETFIX BE	-	0,01
	Razem	100,0	100,0

Tablica 5. 3 Skład mieszanki mineralnej (MM) i mineralno-asfaltowej (MMA)

Tablica 5. 4Uziarnienie mieszanki mineralnej

Sito #, mm	Skład frakcyjny	Pozostaje na sicie (%)	Przechodzi przez sito (%)	Krzywe graniczne wg WT-2, 2008 wobec AC 16 W		
	(%)			Dolna	Górna	
22,4	-		100,0	100	100	
16	-	1,5	98,5	90	100	
11,2	-	25,5	73	65	80	
8	-	16	57	-	-	
5,6	-	14,6	42,4	-	-	
2	73,7	16,1	26,3	25	30	
0,125	-	18,1	8,2	5	10	
0,063	21,8	3,7	4,5	3	7	
< 0,063	4,5	4,5		-	-	
	100	100				

Tablica 5. 5 Zbadane właściwości mieszanki mineralno-asfaltowej AC 16 W, o składzie optymalnym dla zawartości asfaltu Am=4,1 % m/m

		Wyr	Wymagania		
Lp.	Właściwości	(TN/08/5)	(TN/08/5A)	(TN/08/5B)	wg WT-2 2008
	Rodzaj asfaltu	MODBIT 30B	35/50	50/70	
1	Gęstość objętościowa mieszanki-mineralnej, g/cm ³	2,914	2,914	2,914	-
2	Gęstość mieszanki mineralno- asfaltowej (dawna gęstość objętościowa), g/cm ³	2,703	2,714	2,716	-
3	Gęstość objętościowa mieszanki mineralno-asfaltowej (dawna gęstość strukturalna), g/cm ³	2,572	2,585	2,588	-
4	Wolna przestrzeń w mieszance mineralno-asfaltowej, %v/v	4,9	4,8	4,7	Vmin4,0 Vmax7,0
5	Wypełnienie asfaltem wolnej przestrzeni, % v/v	68,0	68,6	69,1	-
6	Odporność na działanie wody, przechowywanie w 40°C z jednym cyklem zamrażania, badanie w 15°C,%	96,01	89,93	96,24	ITSR ₈₀

6.6. AC 22 W z asfaltami 35/50; 50/70; DE 30B (Rec. TN/08/6)

Recepta nr TN/08/6 (TN/08/6A, TN/08/6B)

Beton asfaltowy AC 22 W (KR3- KR6)

o uziarnieniu 0/22 mm do wykonania warstwy wiążącej

A. Informacje ogólne

Data opracowania: 25.11.2008 r.

Przeznaczenie: temat badawczy GDDKiA (TN - 248), kategoria ruchu KR5-KR6 Podstawa projektu: WT-2 Nawierzchnie Asfaltowe – 2008

Tablica 6. 1 Składniki mieszanki

Lp.	Symbol	Rodzaj		
1	Mączka wapienna	wypełniacz		
2	Granit 0/2 mm	kr. dr. gran.		
3	Bazalt 2/5 mm	Grys		
4	Bazalt 5/8 mm	Grys		
5	Bazalt 8/11 mm	Grys		
6	Bazalt 11/16 mm	Grys		
7	Bazalt 16/22 mm	Grys		
8	MODBIT 30B (TN/08/6)	Polimeroasfalt z LOTOS Asfalt – Gdańsk		
9	Asfalt 35/50 (TN/08/6A)	asfalt drogowy z LOTOS Asfalt – Gdańsk		
10	Asfalt 50/70 (TN/08/6B)	asfalt drogowy z LOTOS Asfalt – Gdańsk		
11	WETFIX BE	Środek adhezyjny z Akzo Nobel		

Tablica 6. 2 Uziarnienie materiałów mineralnych

Wymiar oczek sita # [mm]	Mączka wapienna	Granit 0/2 mm	Bazalt 2/5 mm	Bazalt 5/8 mm	Bazalt 8/11 mm	Bazalt 11/16 mm	Bazalt 16/22 mm
22,4	0,0	0,0	0,0	0,0	0,0	0,0	1,80
16,0	0,0	0,0	0,0	0,0	0,0	4,9	79,30
11,2	0,0	0,0	0,0	0,0	6,6	81,3	17,20
8	0,0	0,0	0,0	3,3	68,7	12,9	1,20
5,6	0,0	0,0	1,6	71,9	20,5	0,6	0,30
2	0,4	9,8	94,4	24,3	2,8	0,1	-
0,125	0,8	69,5	3,8	0,3	0,9	0,0	-
0,063	10,8	13,5	0,1	0,1	0,2	0,1	0,10
<0,063	88,0	7,2	0,1	0,1	0,3	0,1	0,10
Łącznie	100	100	100	100	100	100	100

Lp.	Składniki	Mieszanka mineralna, % m/m	Mieszanka mineralno- asfaltowa, % m/m	
1	Mączka wapienna	3,0	2,88	
2	Granit 0/2 [mm]	26,0	25,01	
3	Bazalt 2/5 [mm]	8,0	7,7	
4	Bazalt 5/8 [mm]	8,0	7,7	
5	Bazalt 8/11 [mm]	10,0	9,62	
6	Bazalt 11/16 [mm]	15,0	14,43	
7	Bazalt 16/22 [mm]	30,0	28,86	
8	MODBIT 30B (TN/08/6)	-		
	Asfalt 35/50 (TN/08/6A)		3,79	
	Asfalt 50/70 (TN/08/6B)			
9	WETFIX BE	-	0,01	
	Razem	100,0		

Tablica 6. 3 Skład mieszanki mineralnej (MM) i mineralno-asfaltowej (MMA)

Rysunek 6. 1 Krzywa uziarnienia i uziarnienie mieszanki mineralnej AC 22 W do warstwy wiążącej

Tablica	6.4	Uziarnienie	mieszanki	mineralnei
lasiloa	VI T	U EIGI III UIIIU	IIII O La IIII	minioranioj

Sito #, mm	Skład frakcyjny	Pozostaje na sicie (%)	Przechodzi przez sito (%)	Krzywe graniczne wg WT-2, 2008 wobec AC 22 W	
	(%)			Dolna	Górna
31,5	-	-	-	100	100
22,4	-	0,5	99,5	90	100
16	-	24,5	75,0	65	80
11,2	-	18	57	52	68
8	-	9,4	47,6	-	-
5,6	-	8,1	39,5	-	-
2	72,9	12,4	27,1	25	33
0,125	-	18,6	8,5	5	10
0,063	22,5	3,9	4,6	3	7
< 0,063	4,6	4,6	-	-	-
	100	100			
Tablica 6. 5 Zbadane właściwości mieszanki mineralno-asfaltowej AC 22 W, o składzie optymalnym dla zawartości asfaltu Am=3,8 % m/m

		Wyr	niki AC 22 W		Wymagania	
Lp.	Właściwości	(TN/08/6)	(TN/08/6A)	(TN/08/6B)	wg WT-2 2008	
	Rodzaj asfaltu	MODBIT 30B	35/50	50/70		
1	Gęstość objętościowa mieszanki-mineralnej, g/cm ³	2,907	2,907	2,907	-	
2	Gęstość mieszanki mineralno- asfaltowej (dawna gęstość objętościowa), g/cm ³	2,716	2,719	2,717	-	
3	Gęstość objętościowa mieszanki mineralno-asfaltowej (dawna gęstość strukturalna), g/cm ³	2,607	2,609	2,611	-	
4	Wolna przestrzeń w mieszance mineralno-asfaltowej, %v/v	4,0	4,1	3,9	Vmin4,0 Vmax7,0	
5	Wypełnienie asfaltem wolnej przestrzeni, % v/v	71,1	71,0	71,5	-	
6	Odporność na działanie wody, przechowywanie w 40°C z jednym cyklem zamrażania, badanie w 15°C, %	88,41	96,04	89,32	ITSR ₈₀	

7. Wyniki badań sztywności

7.1. Metoda rozciągania pośredniego ITT (Zadanie 3)

Wyniki badań sztywności metodą ITT poszczególnych mieszanek mineralno-asfaltowych przedstawiono w tablicach 4-19 oraz graficznie na rysunkach **Błąd! Nie można odnaleźć źródła odwołania.**-7.

Tablica 4	Wyniki badań modułu sztywności mieszanki ACWMS 11 DE30B metoda
ITT	

Próbka	w tempe	eraturze 1	0°C	w te	mperaturze	w temperaturze 30°C			
	Wyniki	Średnia	ΔS_{m}	Wyniki	Średnia	ΔS_m	Wyniki	Średnia	ΔS_{m}
1/1	15320			8598			4145		
1/2	14041		-	8243		679	3870	4361	36
1/3	14786	16699	2465	9524	9005		4465		
1/4	17004			9027			4435		
1/5	20447			8580			4285		
1/6	18599			10059			4962		

Tablica 5 Wyniki badań modułu sztywności mieszanki ACWMS 11 20/30 metodą ITT

Próbka	w temp	w temperaturze 10°C			mperaturze 2	w temperaturze 30°C			
	Wyniki	Średnia	ΔS_m	Wyniki	Średnia	ΔS_{m}	Wyniki	Średnia	ΔS_m
1A/1	18965			11373			5821		
1A/2	19594			9589			5154		
1A/3	19767	19219	911	11382	11157	814	6012	5958	438
	20116	19219 911		11315			6121		
1A/5	17537			11277			6357		
1A/6	19334			12006			6281		

Tablica 6 Wyniki badań modułu sztywności mieszanki ACWMS 16 DE30B metodą ITT

Próbka	w tempe	w temperaturze 10°C				w temperaturze 20°C			w temperaturze 30°C		
	Wyniki	Średnia	ΔS_m	Wyniki	Średnia	ΔS_m	Wyniki	Średnia	ΔS_m		
2/1	15898			9370			4837				
2/2	21242			8079			4457				
2/3	14255	16525	2714	8015	9031	942	3593	4451	501		
2/4	15519			10134			4752				
2/6	15708			9557			4615				

Tablica 7 Wyniki badań modułu sztywności mieszanki ACWMS 16 20/30 metodą ITT

Próbka	w tempera	w temperaturze 20°C			w temperaturze 30°C				
	Wyniki	Średnia	ΔS_{m}	Wyniki	Średnia	ΔS_{m}	Wyniki	Średnia	ΔS_{m}
2A/1	20614			12483			6282		
2A/2	21016			14154			6386		
2A/3	20792	21473	890	11084	13033	1340	6580	6692	384
2A/4	24272		12123			7107			
2A/5	22347			14476			6576		
2A/6	22796			13877			7219		

Próbka	w tempe	raturze 10	°C	w temperaturze 20°C			w temperaturze 30°C		
	Wyniki	Średnia	ΔS_m	Wyniki	Średnia	ΔS_{m}	Wyniki	Średnia	ΔS_{m}
3/1	15497			7930			4275		
3/2	15914			9667			5212		
3/3	19079	10001	3500	9946	10220	1733	4929	5067	452
3/4	18308	10094		10092	10330		5021		
3/5	19229			13102			5553		
3/6	20254			11292			5410		

Tablica 8 Wyniki badań modułu sztywności mieszanki AC 16 P DE30B metodą ITT

Tablica 9 Wyniki badań modułu sztywności mieszanki AC 16 P 35/50 metodą ITT

Próbka	w temp	w temperaturze 20°C			w temperaturze 30°C				
1.100.10	Wyniki	Średnia	ΔS_{m}	Wyniki	Średnia	ΔS_{m}	Wyniki	Średnia	ΔS_{m}
3A/1	17486			7797			4134		
3A/2	15634			10084		807	4373	4598	306
3A/3	19628	10125	1657	8300	2066		4591		
3A/4	20075	10133	1057	9286	0900		4803		
3A/5	17280			9240			4983		
3A/6	18704			9089			4705		

Próbka	w tempera	aturze 10°	С	w terr	w temperaturze 20°C			w temperaturze 30°C		
	Wyniki	Średnia	ΔS_{m}	Wyniki	Średnia	ΔS_{m}	Wyniki	Średnia	ΔS_{m}	
3B/1	12915			7437			2470			
3B/2	12579			6341			2298			
3B/3	15064	12/09	065	7493	6762	603	3179	2598	367	
3B/4	12697	13400	905	6748			2790			
3B/5	14036			6579			2168			
3B/6	13175			5976			2685			

Tablica 10 Wyniki badań modułu sztywności mieszanki AC 16 P 50/70 metodą ITT

Tablica 11 Wyniki badań modułu sztywności mieszanki AC 22 P DE30B metodą ITT

Próbka	w tempera	aturze 10°	С	w temperaturze 20°C			w temperaturze 30°C		
	Wyniki	Średnia	ΔS_{m}	Wyniki	Średnia	ΔS_m	Wyniki	Średnia	ΔS_{m}
4/1	27888			12332			6237		
4/2	29162			11909			7003		
4/3	24812	25004	2803	12016	12723	11/2	5572	6168	185
4/4	26044	20004	2003	14668	12125	1172	5838	0100	400
4/5	22995			13550			6249		
4/6	22004			11863			6110		

Próbka	w tempe	raturze 10	°C	w temperaturze 20°C			w temperaturze 30°C		
	Wyniki	Średnia	ΔS_{m}	Wyniki	Średnia	ΔS_{m}	Wyniki	Średnia	ΔS_{m}
4A/1	19908			9477			3921		
4A/2	22843			10637			4173		
4A/3	24034	22622	2062	10839	10407	516	4439	4453	456
4A/4	20243	22032	2003	10429	10407		4790		
4A/5	24498			10844			5169		
4A/6	24266			10213			4226		

Tablica 12 Wyniki badań modułu sztywności mieszanki AC 22 P 35/50 metodą ITT

Tablica 13 Wyniki badań modułu sztywności mieszanki AC 22 P 50/70 metodą ITT

Próbka	w tempera	aturze 10°	С	w temperaturze 20°C			w temperaturze 30°C		
	Wyniki	Średnia	ΔS_{m}	Wyniki	Średnia	ΔS_{m}	Wyniki	Średnia	ΔS_{m}
4B/1	19327			7722			3810		
4B/2	17825			7649		1103	2331	2871	700
4B/3	13651	16622	2675	5353	7065		2006		
4B/4	12887	10033	2075	6562	7205		2798		
4B/5	17799			8211			2705		
4B/6	18309			8090			3574		

Próbka	w tempe	raturze 10	°C	w tem	peraturze	20°C	w temp	eraturze (30°C
	Wyniki	Średnia	ΔS_{m}	Wyniki	Średnia	ΔS_{m}	Wyniki	Średnia	ΔS_{m}
5/1	17152			10799			4469		
5/2	17527			9280			3882		
5/3	16996	17319 2	2120	9536	5 10097	1175	5050	1720	507
5/4	13812	17319 21	2139	9174			5114	4730	527
5/5	17944			9614			4602		
5/6	20483			12182			5312		

Tablica 14 Wyniki badań modułu sztywności mieszanki AC 16 W DE30B metodą ITT

Tablica 15 Wyniki badań modułu sztywności mieszanki AC 16 W 35/50 metodą ITT

Próbka	w tem	peraturze	10°C	w tem	peraturze	20°C	w tem	peraturze	30°C
	Wyniki	Średnia	ΔS_{m}	Wyniki	Średnia	ΔS_{m}	Wyniki	Średnia	ΔS_{m}
5A/1	16723			-			3228		
5A/2	14701			8423			3461		
5A/3	15943	1639/	2006	7683	0227	1/06	3185	3217	167
5A/4	17013	10004	2000	8725	5221	1400	3261	0217	107
5A/5	14017			9754			3224		
5A/6	19965			11549			2941		

Próbka	w tem	peraturze	10°C	w tem	peraturze	20°C	w tem	peraturze	30°C
	Wyniki	Średnia	ΔS_{m}	Wyniki	Średnia	ΔS_{m}	Wyniki	Średnia	ΔS_{m}
5B/1	14695			-			2647		
5B/2	11517			5930			2726		
5B/3	10330	10060	2120	5683	6142	624	2219	2574	202
5B/4	13621	13202	13262 2189 -	5486	0143	631	2490	- 2574	202
5B/5	12974			6711			3007		
5B/6	16432			6905			2356		

Tablica 16 Wyniki badań modułu sztywności mieszanki AC 16 W 50/70 metodą ITT

Próbka	w tem	peraturze	0°C	w tem	peraturze	10°C	w tem	peraturze	20°C	w tem	peraturze	30°C
	Wyniki	Średnia	∆Sm									
6/1	54201			21339			11251			5518		
6/2										-		
6/3	51414	52808	1970	23709	21548	3830	10570	12430	1423	5751	5751	658
6/4				17627			13729			4794		
6/5				18363			13457			6186		
6/6				26883			13143			6507		

Tablica 17 Wyniki badań modułu sztywności mieszanki AC 22 W DE30B metodą ITT

Tablica 18 Wyniki badań modułu sztywności mieszanki AC 22 W 35/50 metodą ITT

Próbka	w tem	peraturze	0°C	w tem	peraturze	10°C	w tem	peraturze	20°C	w temp	oeraturze 3	30°C
	Wyniki	Średnia	ΔS_m	Wyniki	Średnia	ΔS_m	Wyniki	Średnia	ΔS_{m}	Wyniki	Średnia	ΔS_m
6A/1				23826			8445			4059	4117	236
6A/2				18681			8809			3859		
6A/3	51808	51645	230	19588	19803	2029	9324	9670	1027	4257		
6A/4	51482			19467			9688			4287		
6A/5				18971			10914			3782		

	6A/6				18287			10838			4458		
--	------	--	--	--	-------	--	--	-------	--	--	------	--	--

Tablica 19 Wyniki badań modułu sztywności mieszanki AC 22 W 50/70 metodą ITT

Próbka	w ten	nperaturze	€0°C	w temperaturze 10°C			w temperaturze 20°C			w temperaturze 30°C		
TTODRA	Wyniki	Średnia	ΔS_m	Wyniki	Średnia	ΔS_{m}	Wyniki	Średnia	ΔS_{m}	Wyniki	Średnia	ΔS_{m}
6B/1				12243			8106			2276	2360	686
6B/3	40207			16015			6182			2864		
6B/4		29277	15458	14041	12858	2924	5854	5879	1943	2880		
6B/6	18346			9130			3374			1422		

Rysunek 5 Zestawienie wyników badań metodą ITT w 10°C

Rysunek 6 Zestawienie wyników badań metodą ITT w 20°C

Rysunek 7 Zestawienie wyników badań metodą ITT w 30°C

7.2. Metoda belki czteropunktowo-zginanej 4PB (Zadanie 4)

Wyniki badań sztywności metodą 4PB poszczególnych mieszanek mineralno-asfaltowych przedstawiono w tablicach 20-35.

Oznaczenia przyjęte w tablicach (dotyczy wyników 4PB i TC):

E – moduł sztywności,

E1 – cześć sprężysta modułu zespolonego,

E2 – cześć lepka modułu zespolonego,

Kąt – kąt przesunięcia fazowego,

ε – amplituda odkształcenia w badaniu,

 Δ – odchylenie standardowe.

			Tempe	ratura 0 °	С		
	E1	E2	E	Kąt	3	ΔE	∆ Kąt
HZ	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]
0,2	16664	2928	16919	10,0	51,1	652,3	0,3
0,5	18651	2866	18870	8,7	50,9	653,4	0,3
1	20097	2812	20293	8,0	50,9	722,6	0,3
2	21413	2728	21586	7,3	51,1	724,2	0,3
5	23174	2601	23319	6,4	50,7	698,8	0,3
10	24452	2408	24571	5,6	47,1	708,7	0,3
20	26802	-600	26845	-1,3	47,3	847,8	3,4
30	34197	6693	34853	11,1	50,3	1138,8	1,3
		-	Temper	atura 10	°C		-
Ц-7	E1	E2	Е	Kąt	3	ΔE	∆ Kąt
112	[MPa]	[MPa]	[MPa]	[°]	µm/m	[MPa]	[°]
0,2	9398	2805	9808	16,6	50,1	620,5	0,7
0,5	11186	2934	11565	14,7	49,1	639,9	0,7
1	12586	2998	12938	13,4	48,9	669,4	0,6
2	13957	3028	14282	12,3	49,2	718,9	0,6
5	15772	3060	16067	11,0	50,2	727,3	0,6
10	17268	3026	17532	9,9	50,7	803,4	0,6
20	19407	2254	19541	6,6	48,0	1171,0	1,2
30	26335	4265	26687	9,3	50,0	1584,5	1,7
			Temper	atura 20	°C		
Н7	E1	E2	ш	Kąt	3	ΔE	∆ Kąt
112	[MPa]	[MPa]	[MPa]	[°]	µm/m	[MPa]	[°]
0,2	3582	1982	4094	29,0	50,4	253,5	0,3
0,5	4780	2337	5321	26,1	49,5	314,3	0,4
1	5833	2585	6380	23,9	49,5	367,8	0,4
2	7006	2819	7552	21,9	49,9	417,9	0,4
5	8783	3102	9315	19,5	50,4	486,2	0,3
10	10279	3262	10785	17,6	51,7	490,4	0,3
20	12612	2408	12847	10,8	52,9	616,2	2,3
30	15336	4104	15876	15,0	51,0	825,3	0,7
			Temper	atura 30	°C		
Hz	E1	E2	E	Kąt	3	ΔE	∆ Kąt
112	[MPa]	[MPa]	[MPa]	[°]	µm/m	[MPa]	[°]
0,2	1272	1009	1624	38,4	50,2	122,3	1,8
0,5	1806	1335	2247	36,5	49,5	148,0	1,6
1	2329	1608	2831	34,6	49,0	166,6	1,3
2	2997	1913	3556	32,6	49,0	199,7	1,2
5	4092	2316	4702	29,5	49,6	242,6	1,0
10	5101	2611	5730	27,1	50,7	275,4	0,8
20	6245	2656	6787	23,1	50,7	330,6	0,7
30	7269	3466	8054	25,5	51,1	399,9	1,3

Tablica 20 Wyniki badania modułu zespolonego metodą 4PB mieszanki ACWMS 11 20/30

Tablica 21 Wyniki badania modułu zespolonego metodą 4PB mieszanki ACWMS 11 DE30B

			Tempe	ratura 0 °	С		
<u>ц</u> -	E1	E2	E	Kąt	3	ΔE	∆ Kąt
п	[MPa]	[MPa]	[MPa]	[°]	µm/m	[MPa]	[°]
0,2	12919	2883	13237	12,6	50,9	426,7	0,6
0,5	14867	2891	15146	11,0	50,7	413,7	0,5
1	16273	2869	16524	10,0	50,8	427,2	0,4
2	17660	2836	17886	9,1	51,0	449,8	0,3
5	19579	2787	19777	8,1	51,1	613,8	0,3
10	20821	2671	20992	7,3	48,5	635,8	0,3
20	22770	1662	22840	4,2	49,8	1477,0	1,9
30	28566	4740	28971	9,4	49,9	704,6	2,0
	-	-	Temper	atura 10	°C		-
H7	E1	E2	E	Kąt	3	ΔE	∆ Kąt
112	[MPa]	[MPa]	[MPa]	[°]	µm/m	[MPa]	[°]
0,2	6457	2552	6944	21,6	50,1	228,2	0,4
0,5	8110	2830	8590	19,2	49,1	238,3	0,4
1	9425	2993	9889	17,6	49,0	257,8	0,4
2	10787	3121	11229	16,1	49,3	294,0	0,3
5	12678	3245	13087	14,4	50,0	324,9	0,2
10	14194	3270	14566	13,0	50,9	388,5	0,2
20	16355	1939	16476	6,8	50,3	452,6	1,8
30	21237	4309	21678	11,5	51,2	1033,8	1,8
	1	1	Temper	atura 20	°C		1
Hz	E1	E2	E	Kąt	3	ΔE	∆ Kąt
	[MPa]	[MPa]	[MPa]	[°]	µm/m	[MPa]	[°]
0,2	1946	1329	2357	34,4	50,1	107,7	1,3
0,5	2670	1694	3162	32,4	49,4	142,4	1,0
1	3366	1986	3908	30,6	48,4	228,5	0,9
2	4187	2286	4771	28,7	49,2	320,1	1,0
5	5529	2679	6144	25,9	50,2	420,3	1,0
10	6728	2936	7342	23,6	51,4	502,7	1,0
20	8749	2783	9187	17,8	53,9	875,8	2,5
30	9809	3740	10501	21,0	51,4	860,2	1,4
	1	1	Temper	atura 30	°C		1
Hz	E1	E2	E	Kąt	3	ΔE	∆ Kąt
	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]
0,2	716	631	955	41,3	50,5	45,5	2,7
0,5	974	854	1297	41,2	49,9	60,4	2,6
1	1244	1065	1638	40,5	50,0	76,4	2,3
2	1610	1312	2078	39,2	50,3	91,2	1,9
5	2263	1705	2834	37,0	50,4	117,3	1,5
10	2926	2037	3566	34,8	51,0	152,3	1,3
20	3871	2278	4494	30,5	52,4	270,4	2,2
30	4274	2707	5060	32,4	51,5	212,0	1,7

Tablica 22 Wyniki badania modułu zespolonego metodą 4PB mieszanki ACWMS 16 20/30

			Tempe	ratura 0 °	С		
□-	E1	E2	E	Kąt	3	ΔE	∆ Kąt
112	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]
0,2	12342	2122	12524	9,8	57,6	930,5	0,7
0,5	13813	2097	13972	8,7	57,4	1068,0	0,5
1	14765	2045	14907	7,9	57,5	1035,4	0,5
2	15665	1966	15789	7,2	57,7	1046,8	0,5
5	16950	1856	17051	6,3	56,8	1107,9	0,4
10	17937	1735	18021	5,5	53,4	1211,3	0,5
20	19627	327	19654	1,0	52,8	1483,8	3,4
30	25450	4766	25916	10,6	56,3	1902,5	2,9
			Temper	atura 10	°C		
Ц-7	E1	E2	E	Kąt	3	ΔE	∆ Kąt
112	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]
0,2	7150	2082	7447	16,2	57,2	441,1	0,3
0,5	8494	2165	8765	14,3	57,4	490,5	0,2
1	9525	2198	9775	13,0	57,3	541,3	0,2
2	10516	2195	10742	11,8	57,1	588,1	0,2
5	11855	2183	12055	10,4	57,4	657,7	0,2
10	12950	2126	13123	9,3	56,0	672,9	0,3
20	13909	-1478	14474	-5,9	54,6	466,4	17,0
30	16164	1757	16508	5,1	56,9	1975,6	12,2
			Tempera	atura 20	°C		
Ц-7	E1	E2	E	Kąt	3	ΔE	∆ Kąt
112	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]
0,2	2710	1485	3090	28,8	57,5	253,2	0,6
0,5	3602	1727	3995	25,6	57,5	310,0	0,6
1	4400	1898	4792	23,4	57,5	343,0	0,5
2	5272	2048	5656	21,3	57,5	373,5	0,5
5	6545	2213	6909	18,7	57,6	410,2	0,4
10	7617	2302	7957	16,8	57,9	453,3	0,3
20	9661	2012	9870	11,8	58,8	822,9	1,5
30	11223	3589	11784	17,7	57,1	868,6	0,9
			Temper	atura 30	°C		
<u>ц</u> -	E1	E2	E	Kąt	3	ΔE	∆ Kąt
п∠	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]
0,2	888	701	1131	38,3	57,5	103,3	0,5
0,5	1260	915	1557	36,0	57,4	140,5	0,8
1	1619	1103	1959	34,3	57,6	165,1	0,8
2	2077	1311	2456	32,3	57,7	203,6	0,9
5	2858	1603	3277	29,3	57,5	266,7	0,8
10	3584	1824	4022	27,0	57,9	313,7	0,9
20	4593	1873	4962	22,3	58,2	569,5	1,7
30	4963	2341	5491	25,4	58,4	503,6	2,3

Tablica 23 Wyniki badania modułu zespolonego metodą 4PB mieszanki ACWMS 16 DE30B

			Tempe	ratura 0 °	C		
□-	E1	E2	E	Kąt	3	ΔE	∆ Kąt
п∠	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]
0,2	16332	3293	16661	11,4	55,7	739,4	0,1
0,5	17753	3213	18041	10,3	63,3	700,3	0,2
1	19363	3006	19595	8,8	49,8	789,5	0,2
2	20900	3054	21122	8,3	54,8	758,1	0,2
5	21299	2912	21497	7,8	51,3	835,7	0,2
10	22623	2797	22795	7,1	49,0	892,3	0,2
20	24779	1801	24858	4,2	55,5	937,5	2,2
30	25027	2327	25145	5,3	49,5	869,1	1,8
			Tempera	atura 10	°C		
H7	E1	E2	E	Kąt	3	ΔE	∆ Kąt
112	[MPa]	[MPa]	[MPa]	[°]	µm/m	[MPa]	[°]
0,2	6895	2754	7425	21,8	50,1	263,0	0,4
0,5	8698	3041	9215	19,3	48,8	322,6	0,3
1	10139	3205	10634	17,5	48,5	375,9	0,3
2	11612	3325	12079	16,0	49,0	431,8	0,2
5	13625	3441	14053	14,2	49,9	470,7	0,2
10	15260	3501	15657	12,9	50,9	497,6	0,2
20	17512	2643	17722	8,7	50,3	845,4	2,4
30	24259	4903	24751	11,4	51,1	683,6	0,9
		1	Temper	atura 20	°C		
Hz	E1	E2	E	Kąt	3	ΔE	∆ Kąt
	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]
0,2	2265	1468	2700	33,1	50,3	294,4	2,1
0,5	3108	1867	3627	31,1	49,3	324,3	1,8
1	3872	2187	4447	29,5	49,3	314,5	1,3
2	4822	2514	5439	27,6	49,7	364,4	1,1
5	6325	2936	6973	24,9	50,4	420,1	0,7
10	7611	3218	8263	22,9	52,3	483,0	0,4
20	9989	2764	10370	15,4	54,1	352,6	2,2
30	11494	4172	12229	19,9	51,6	878,6	1,1
			Temper	atura 30	°C		
Hz	E1	E2	E	Kąt	3	ΔE	∆ Kąt
	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]
0,2	807	626	1022	37,8	49,8	74,9	0,7
0,5	1111	851	1399	37,5	49,0	97,5	0,8
1	1417	1069	1775	37,0	48,8	103,5	0,8
2	1833	1336	2268	36,1	48,9	124,0	0,8
5	2571	1/51	3111	34,3	49,1	166,8	0,7
10	3295	2098	3906	32,5	49,9	202,6	0,6
20	4282	2359	4889	28,9	50,2	236,5	0,4
30	4812	2789	5562	30,1	51,7	269,8	0,6

Tablica 24 Wyniki badania modułu zespolonego metodą 4PB mieszanki AC 16 P DE30B

			Tempe	ratura 0 °	С		
<u>ц</u> -	E1	E2	E	Kąt	3	ΔE	∆ Kąt
112	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]
0,2	15555	2757	15798	10,1	51,4	835,7	0,3
0,5	17484	2745	17698	8,9	51,1	1097,1	0,2
1	18871	2718	19066	8,2	51,2	1197,4	0,2
2	20087	2669	20263	7,6	51,4	1300,1	0,3
5	21793	2628	21951	6,9	51,4	1429,5	0,5
10	22949	2610	23098	6,5	49,9	1643,9	0,6
20	25128	-2362	25355	-4,7	49,2	4051,0	5,9
30	29488	5903	30120	11,4	52,0	1476,4	3,6
			Tempera	atura 10	°C		
H7	E1	E2	E	Kąt	3	ΔE	∆ Kąt
112	[MPa]	[MPa]	[MPa]	[°]	µm/m	[MPa]	[°]
0,2	7370	2763	7872	20,6	51,4	508,9	1,0
0,5	9070	2983	9549	18,2	51,5	533,1	0,8
1	10446	3114	10901	16,6	51,6	581,1	0,7
2	11855	3204	12281	15,1	51,5	652,1	0,7
5	13765	3276	14150	13,4	51,6	740,9	0,6
10	15318	3269	15663	12,0	51,4	773,8	0,5
20	17895	820	17978	2,4	48,6	1245,2	5,6
30	21606	5988	22424	15,5	51,1	1013,9	1,1
			Temper	atura 20	°C		
H7	E1	E2	E	Kąt	3	ΔE	∆ Kąt
112	[MPa]	[MPa]	[MPa]	[°]	µm/m	[MPa]	[°]
0,2	2567	1616	3033	32,2	51,2	156,3	0,4
0,5	3483	1997	4015	29,8	51,2	205,7	0,3
1	4331	2292	4900	27,9	51,3	252,4	0,2
2	5323	2576	5913	25,8	51,3	320,3	0,3
5	6903	2935	7501	23,0	51,3	424,3	0,2
10	8260	3158	8843	20,9	51,9	512,3	0,2
20	10175	3002	10617	16,4	52,5	894,8	2,6
30	11809	3952	12455	18,5	51,6	1076,8	1,2
		-	Temper	atura 30	°C		-
Н7	E1	E2	Е	Kąt	3	ΔE	∆ Kąt
112	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]
0,2	856	680	1093	38,5	51,3	75,4	0,8
0,5	1185	916	1498	37,7	51,2	89,4	0,6
1	1512	1135	1890	36,9	51,3	102,2	0,4
2	1953	1400	2403	35,6	51,4	125,8	0,4
5	2736	1806	3278	33,4	51,3	175,2	0,2
10	3490	2136	4092	31,5	51,7	218,9	0,2
20	4360	2296	4927	27,8	52,1	263,8	0,2
30	4828	2812	5587	30,2	52,5	340,2	0,1

Temperatura 0 °C E1 E2 Е Kat $\Delta \mathbf{E}$ Δ Kat 3 Ηz [MPa] [MPa] [MPa] [°] μm/m [MPa] [°] 0,2 16446 3147 16745 10,8 51,1 187,9 0,2 3070 51,0 0,5 18577 18829 9,4 212,3 0,2 20167 3007 20390 51,1 223,1 1 8,5 0,2 51,3 2 21545 2896 21739 7,7 245,3 0,2 2736 23577 51,0 203,5 0,2 5 23418 6,7 10 24723 2621 24862 6,1 48,8 271,8 0,2 20 27029 819 27050 1,8 50,4 446,0 1,7 30 34821 7739 12,5 52,0 35685 1569,5 1,9 Temperatura 10 °C Kąt E1 E2 Ε $\Delta \mathbf{E}$ ∆ Kąt 3 Hz [MPa] [MPa] [MPa] [°] μm/m [MPa] [°] 8433 3097 8984 20,2 51,2 451,5 0,2 0,8 0,5 10446 3314 10960 17,6 51,2 485,7 0,7 12004 3403 12477 15,8 51,1 503,6 0,6 1 2 3425 13545 13972 14,2 50,9 494,9 0,5 5 15631 3430 16003 12,4 51,2 565,9 0,5 11,1 10 17299 3398 17630 50,8 667,0 0,3 48,9 20 19790 731 19827 2,2 773,7 3,3 30 24434 5221 24986 12,1 51,5 1119,8 0,5 Temperatura 20 °C Е E1 E2 Kąt $\Delta \; \textbf{E}$ ∆ Kąt 3 Ηz [MPa] [MPa] [MPa] [°] μm/m [MPa] [°] 0,2 2466 1781 3042 35,9 51,1 153,4 0,8 0,5 3491 2230 4142 32,6 51,2 190,2 0,6 4453 2573 5143 30,0 51,2 222,6 0,5 1 2 5611 2894 6313 27,3 51,2 259,6 0,4 5 7408 3283 8103 23,9 51,2 296,5 0,3 10 8943 3519 9610 51,7 339,0 0,3 21,5 20 11316 3237 11771 16,0 50,9 582,9 0,8 30 12579 4339 13313 19,0 50,6 623,0 2,2 Temperatura 30 °C E2 Ε E1 $\Delta \mathbf{E}$ Kat ∆ Kąt 3 Ηz [MPa] [MPa] [MPa] [°] [°] µm/m [MPa] 0,2 722 684 995 43,4 51,1 19,3 0,4 0,5 1051 975 1433 42,8 51,1 47,5 0,9

1390

1859

2741

3616

4879

5377

1

2

5

10

20

30

1257

1584

2085

2489

2667

3168

1874

2443

3444

4390

5561

6241

42,1

40,4

37,2

34.5

28,7

30,5

51,2

51,2

51,2

51,5

52,4

52,4

80,5

93,9

135,7

156,8

327,0

251,2

0,9

0,7

0,4

0,3

1,4

0,3

Tablica 25 Wyniki badania modułu zespolonego metodą 4PB mieszanki AC 16 P 35/50

Tablica 26 Wyniki badania modułu zespolonego metodą 4PB mieszanki AC 16 P 50/70

Temperatura 0 °C										
⊔ →	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
пΖ	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]			
0,2	11813	2830	12147	13,5	51,0	2562,0	0,4			
0,5	13688	2812	13974	11,6	50,8	2954,0	0,2			
1	15052	2768	15305	10,4	50,9	3229,2	0,1			
2	16315	2703	16537	9,4	51,0	3435,8	0,1			
5	18014	2574	18197	8,1	50,8	3725,6	0,3			
10	19181	2414	19333	7,2	48,5	3943,1	0,3			
20	21353	-836	21418	-1,8	49,1	4320,1	4,2			
30	25765	5023	26254	11,2	51,9	5012,2	1,0			
			Tempera	atura 10	°C					
Ц-7	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
112	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]			
0,2	5299	2446	5836	24,9	50,4	1364,5	0,7			
0,5	6870	2746	7399	21,9	49,7	1688,9	0,5			
1	8159	2915	8664	19,7	49,6	1940,4	0,4			
2	9497	3035	9971	17,8	50,1	2209,1	0,3			
5	11324	3123	11747	15,5	50,5	2574,8	0,3			
10	12787	3140	13167	13,8	50,8	2872,7	0,2			
20	14547	2891	14835	11,4	44,6	4686,6	1,6			
30	17217	3735	17623	12,6	35,1	6046,3	1,5			
Temperatura 20 °C										
Н7	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
112	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]			
0,2	1311	1151	1745	41,4	50,3	387,0	1,5			
0,5	1958	1549	2497	38,5	49,5	530,2	1,1			
1	2605	1875	3210	35,9	49,6	668,5	1,0			
2	3405	2208	4058	33,1	49,8	844,1	0,8			
5	4725	2625	5406	29,1	50,1	1115,1	0,5			
10	5943	2908	6617	26,1	51,7	1337,9	0,6			
20	7514	2739	7998	20,0	52,8	1461,6	0,6			
30	8993	3856	9786	23,1	51,9	1810,4	1,0			
		-	Temper	atura 30	°C		-			
Н7	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
112	[MPa]	[MPa]	[MPa]	[°]	µm/m	[MPa]	[°]			
0,2	497	525	723	46,8	50,4	141,9	1,8			
0,5	667	719	981	47,4	49,4	196,5	1,6			
1	857	911	1251	47,0	49,4	258,6	1,5			
<u> </u>	1111	11/0	1594	45,8	49,7	335,8	1,1			
2	1114	1140								
2 5	1622	1525	2226	43,4	50,3	473,7	0,7			
2 5 10	1622 2161	1525 1854	2226 2848	43,4 40,7	50,3 50,8	473,7 597,9	0,7 0,7			
2 5 10 20	1114 1622 2161 2825	1525 1854 2065	2226 2848 3500	43,4 40,7 36,2	50,3 50,8 52,2	473,7 597,9 723,1	0,7 0,7 0,5			

Tablica 27 Wyniki badania modułu zespolonego metodą 4PB mieszanki AC 22 P DE30B

Temperatura 0 °C										
<u>ц</u> -	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
112	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]			
0,2	13832	2463	14050	10,1	51,2	3412,5	0,1			
0,5	15581	2416	15767	8,8	51,0	3906,1	0,2			
1	16788	2351	16951	8,0	51,2	4264,8	0,2			
2	17859	2266	18002	7,2	51,2	4506,0	0,2			
5	19345	2144	19464	6,3	50,5	4997,4	0,1			
10	20400	2032	20501	5,7	48,6	5239,1	0,2			
20	21816	-37	21846	0,2	48,5	5924,9	3,6			
30	27898	6049	28564	12,3	50,8	8302,8	2,4			
			Tempera	atura 10	°C					
H7	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
112	[MPa]	[MPa]	[MPa]	[°]	µm/m	[MPa]	[°]			
0,2	7154	2455	7563	18,9	51,2	1719,2	0,3			
0,5	8717	2633	9106	16,7	51,2	2115,3	0,5			
1	9896	2701	10258	15,2	51,1	2375,8	0,5			
2	11091	2740	11425	13,8	51,0	2668,1	0,4			
5	12734	2766	13031	12,2	51,0	3056,8	0,3			
10	14058	2731	14321	11,0	50,3	3344,6	0,2			
20	15854	2067	15995	7,5	49,7	3814,4	2,0			
30	21161	4999	21745	13,2	51,3	5407,9	0,8			
Temperatura 20 °C										
H7	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
112	[MPa]	[MPa]	[MPa]	[°]	µm/m	[MPa]	[°]			
0,2	2434	1473	2845	31,1	51,1	534,8	0,8			
0,5	3263	1788	3721	28,7	51,2	720,9	0,5			
1	4016	2029	4499	26,7	51,2	880,3	0,5			
2	4887	2259	5384	24,7	51,2	1061,8	0,5			
5	6256	2545	6753	22,1	51,2	1357,6	0,5			
10	7409	2711	7889	20,0	51,6	1600,7	0,5			
20	9386	2462	9709	14,6	52,6	1769,7	2,3			
30	10577	3865	11266	19,9	51,5	2461,3	2,2			
			Tempera	atura 30	°C					
Н7	E1	E2	Е	Kąt	3	ΔE	∆ Kąt			
112	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]			
0,2	919	683	1145	36,6	51,1	227,8	0,2			
0,5	1241	898	1532	35,9	51,0	294,8	0,2			
1	1560	1100	1909	35,2	51,1	370,7	0,3			
2	1977	1335	2386	34,0	51,4	477,7	0,2			
5	2734	1700	3220	31,8	51,0	647,2	0,3			
10	3453	1981	3981	29,8	51,6	809,5	0,3			
20	4575	2130	5047	24,8	52,9	952,3	1,2			
30	4981	2536	5590	26,9	52,6	1180,5	0,5			

Tablica 28 Wyniki badania modułu zespolonego metodą 4PB mieszanki AC 22 P 35/50

Temperatura 0 °C										
	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
п	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]			
0,2	14576	2898	14861	11,3	51,0	2416,8	0,3			
0,5	16494	2830	16736	9,7	50,8	2642,1	0,4			
1	17949	2786	18164	8,8	50,9	2845,8	0,4			
2	19257	2709	19447	8,0	51,0	3055,6	0,4			
5	21018	2588	21177	7,0	50,7	3379,6	0,3			
10	22153	2434	22287	6,3	48,6	3638,0	0,4			
20	23458	303	23513	1,4	47,7	5024,6	4,2			
30	29567	7385	30504	14,2	50,6	5734,3	2,7			
			Temper	atura 10	°C					
	E1	E2	Е	Kąt	3	ΔΕ	∆ Kąt			
п	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]			
0,2	7132	2809	7666	21,5	51,0	1365,0	0,4			
0,5	8929	3006	9421	18,6	51,0	1632,0	0,4			
1	10347	3114	10805	16,8	50,9	1882,2	0,4			
2	11746	3153	12162	15,1	50,8	2095,5	0,3			
5	13671	3171	14034	13,1	50,9	2443,3	0,3			
10	15172	3119	15489	11,6	50,8	2650,8	0,3			
20	17051	2292	17206	7,7	50,4	3123,5	0,9			
30	21836	5289	22473	13,4	51,7	5391,6	1,5			
Temperatura 20 °C										
□-	E1	E2	E	Kąt	3	ΔΕ	∆ Kąt			
ΠZ	[MPa]	[MPa]	[MPa]	[°]	um/m	[MPa]	[°]			
			[]			L				
0,2	2155	1576	2670	36,2	بيس 51,0	425,7	0,5			
0,2 0,5	2155 3058	1576 1989	2670 3648	36,2 33,1	51,0 51,0	425,7 594,7	0,5 0,4			
0,2 0,5 1	2155 3058 3912	1576 1989 2300	2670 3648 4539	36,2 33,1 30,5	51,0 51,0 51,1	425,7 594,7 740,7	0,5 0,4 0,4			
0,2 0,5 1 2	2155 3058 3912 4933	1576 1989 2300 2600	2670 3648 4539 5577	36,2 33,1 30,5 27,8	51,0 51,0 51,1 51,1	425,7 594,7 740,7 928,8	0,5 0,4 0,4 0,4			
0,2 0,5 1 2 5	2155 3058 3912 4933 6546	1576 1989 2300 2600 2959	2670 3648 4539 5577 7184	36,2 33,1 30,5 27,8 24,4	51,0 51,0 51,1 51,1 51,1 51,0	425,7 594,7 740,7 928,8 1210,2	0,5 0,4 0,4 0,4 0,3			
0,2 0,5 1 2 5 10	2155 3058 3912 4933 6546 7903	1576 1989 2300 2600 2959 3159	2670 3648 4539 5577 7184 8511	36,2 33,1 30,5 27,8 24,4 21,8	51,0 51,1 51,1 51,1 51,0 51,5	425,7 594,7 740,7 928,8 1210,2 1420,0	0,5 0,4 0,4 0,4 0,3 0,4			
0,2 0,5 1 2 5 10 20	2155 3058 3912 4933 6546 7903 9548	1576 1989 2300 2600 2959 3159 3174	2670 3648 4539 5577 7184 8511 10064	36,2 33,1 30,5 27,8 24,4 21,8 18,4	51,0 51,1 51,1 51,1 51,0 51,5 51,1	425,7 594,7 740,7 928,8 1210,2 1420,0 1560,3	0,5 0,4 0,4 0,4 0,4 0,3 0,4 1,2			
0,2 0,5 1 2 5 10 20 30	2155 3058 3912 4933 6546 7903 9548 11226	1576 1989 2300 2600 2959 3159 3174 4465	2670 3648 4539 5577 7184 8511 10064 12086	36,2 33,1 30,5 27,8 24,4 21,8 18,4 21,5	51,0 51,0 51,1 51,1 51,0 51,5 51,1 51,2	425,7 594,7 740,7 928,8 1210,2 1420,0 1560,3 2177,5	0,5 0,4 0,4 0,4 0,3 0,4 1,2 1,6			
0,2 0,5 1 2 5 10 20 30	2155 3058 3912 4933 6546 7903 9548 11226	1576 1989 2300 2600 2959 3159 3174 4465	2670 3648 4539 5577 7184 8511 10064 12086 Temper	36,2 33,1 30,5 27,8 24,4 21,8 18,4 21,5 atura 30	51,0 51,1 51,1 51,1 51,5 51,5 51,1 51,2 °C	425,7 594,7 740,7 928,8 1210,2 1420,0 1560,3 2177,5	0,5 0,4 0,4 0,4 0,4 0,3 0,4 1,2 1,6			
0,2 0,5 1 2 5 10 20 30	2155 3058 3912 4933 6546 7903 9548 11226 E1	(in d) 1576 1989 2300 2600 2959 3159 3174 4465 E2	2670 3648 4539 5577 7184 8511 10064 12086 Temper E	36,2 33,1 30,5 27,8 24,4 21,8 18,4 21,5 atura 30 Kąt	51,0 51,1 51,1 51,1 51,5 51,5 51,1 51,2 °C ε	425,7 594,7 740,7 928,8 1210,2 1420,0 1560,3 2177,5	0,5 0,4 0,4 0,4 0,3 0,4 1,2 1,6			
0,2 0,5 1 2 5 10 20 30 Hz	2155 3058 3912 4933 6546 7903 9548 11226 E1 [MPa]	[,M, 4] 1576 1989 2300 2600 2959 3159 3174 4465 E2 [MPa]	2670 3648 4539 5577 7184 8511 10064 12086 Temper E [MPa]	36,2 33,1 30,5 27,8 24,4 21,8 18,4 21,5 atura 30 Kąt [[°]]	μm/m 51,0 51,1 51,1 51,5 51,1 51,2 °C ε μm/m	425,7 594,7 740,7 928,8 1210,2 1420,0 1560,3 2177,5 Δ E [MPa]	0,5 0,4 0,4 0,4 0,3 0,4 1,2 1,6 △ Kąt [°]			
0,2 0,5 1 2 5 10 20 30 Hz 0,2	2155 3058 3912 4933 6546 7903 9548 11226 E1 [MPa] 670	[,m, a] 1576 1989 2300 2600 2959 3159 3174 4465 E2 [MPa] 640	2670 3648 4539 5577 7184 8511 10064 12086 Temper E [MPa] 927	36,2 33,1 30,5 27,8 24,4 21,8 18,4 21,5 atura 30 Kąt [[°]] 43,8	μm/m 51,0 51,1 51,1 51,5 51,1 51,5 51,1 51,2 °C ε μm/m 50,9	425,7 594,7 740,7 928,8 1210,2 1420,0 1560,3 2177,5 Δ Ε [MPa] 157,4	0,5 0,4 0,4 0,4 0,4 0,3 0,4 1,2 1,6 Δ Kąt [°] 1,0			
0,2 0,5 1 2 5 10 20 30 Hz 0,2 0,5	2155 3058 3912 4933 6546 7903 9548 11226 E1 [MPa] 670 967	[,M, 4] 1576 1989 2300 2600 2959 3159 3174 4465 E2 [MPa] 640 888	2670 3648 4539 5577 7184 8511 10064 12086 Temper E [MPa] 927 1313	36,2 33,1 30,5 27,8 24,4 21,8 18,4 21,5 atura 30 Kąt [°] 43,8 42,6	μm/m 51,0 51,1 51,1 51,5 51,1 51,2 °C ε μm/m 50,9 51,0	425,7 594,7 740,7 928,8 1210,2 1420,0 1560,3 2177,5 Δ E [MPa] 157,4 217,8	0,5 0,4 0,4 0,4 0,3 0,4 1,2 1,6			
0,2 0,5 1 2 5 10 20 30 30 Hz 0,2 0,5 1	2155 3058 3912 4933 6546 7903 9548 11226 E1 [MPa] 670 967 1278	[,iii d] 1576 1989 2300 2600 2959 3159 3174 4465 E2 [MPa] 640 888 1126	2670 3648 4539 5577 7184 8511 10064 12086 Temper E [MPa] 927 1313 1703	36,2 33,1 30,5 27,8 24,4 21,8 18,4 21,5 atura 30 Kąt [°] 43,8 42,6 41,4	μm/m 51,0 51,1 51,1 51,5 51,5 51,1 51,2 °C ε μm/m 50,9 51,0 51,1	425,7 594,7 740,7 928,8 1210,2 1420,0 1560,3 2177,5 Δ E [MPa] 157,4 217,8 286,0	$\begin{array}{c} 1 \\ 0,5 \\ 0,4 \\ 0,4 \\ 0,4 \\ 0,3 \\ 0,4 \\ 1,2 \\ 1,6 \\ \hline \\ \Delta \text{ Kąt} \\ [^{\circ}] \\ 1,0 \\ 0,7 \\ 0,4 \\ \end{array}$			
0,2 0,5 1 2 5 10 20 30 30 Hz 0,2 0,5 1 2	2155 3058 3912 4933 6546 7903 9548 11226 E1 [MPa] 670 967 1278 1711	E2 [MPa] 640 888 1126 1415	2670 3648 4539 5577 7184 8511 10064 12086 Temper E [MPa] 927 1313 1703 2220	36,2 33,1 30,5 27,8 24,4 21,8 18,4 21,5 atura 30 Kąt [[°]] 43,8 42,6 41,4 39,6	μm/m 51,0 51,1 51,1 51,5 51,5 51,1 51,2 °C ε μm/m 50,9 51,1 51,2 °C 1 51,2 °C 50,9 51,0 51,1 51,2	425,7 594,7 740,7 928,8 1210,2 1420,0 1560,3 2177,5	0,5 0,4 0,4 0,4 0,3 0,4 1,2 1,6 Δ Kąt [°] 1,0 0,7 0,4 0,4			
0,2 0,5 1 2 5 10 20 30 30 Hz 0,2 0,5 1 2 5	2155 3058 3912 4933 6546 7903 9548 11226 E1 [MPa] 670 967 1278 1711 2505	[,iiii d] 1576 1989 2300 2600 2959 3159 3174 4465 E2 [MPa] 640 888 1126 1415 1865	2670 3648 4539 5577 7184 8511 10064 12086 Temper E [MPa] 927 1313 1703 2220 3123	36,2 33,1 30,5 27,8 24,4 21,8 18,4 21,5 atura 30 Kąt [°] 43,8 42,6 41,4 39,6 36,7	μm/m 51,0 51,1 51,1 51,5 51,1 51,2 °C ε μm/m 50,9 51,1 51,2 °C 50,9 51,2 50,9 51,2 50,9	425,7 594,7 740,7 928,8 1210,2 1420,0 1560,3 2177,5 Δ E [MPa] 157,4 217,8 286,0 372,7 532,0	$\begin{array}{c} 1 \\ 0,5 \\ 0,4 \\ 0,4 \\ 0,3 \\ 0,4 \\ 1,2 \\ 1,6 \\ \hline \\ \Delta \text{ Kąt} \\ \hline \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 7 \\ 0,4 \\ 0,4 \\ 0,3 \\ \hline \end{array}$			
0,2 0,5 1 2 5 10 20 30 30 Hz 0,2 0,5 1 2 5 10	2155 3058 3912 4933 6546 7903 9548 11226 E1 [MPa] 670 967 1278 1711 2505 3302	[,iiii d] 1576 1989 2300 2600 2959 3159 3174 4465 E2 [MPa] 640 888 1126 1415 1865 2228	2670 3648 4539 5577 7184 8511 10064 12086 Temper E [MPa] 927 1313 1703 2220 3123 3983	36,2 33,1 30,5 27,8 24,4 21,8 18,4 21,5 atura 30 Kąt [⁰] 43,8 42,6 41,4 39,6 36,7 34,1	μm/m 51,0 51,1 51,1 51,5 51,1 51,2 °C ε μm/m 50,9 51,1 51,2 °C 50,9 51,1 51,2 50,9 51,4 50,9 51,4	425,7 594,7 740,7 928,8 1210,2 1420,0 1560,3 2177,5 Δ E [MPa] 157,4 217,8 286,0 372,7 532,0 685,6	$\begin{array}{c} 1 \\ 0,5 \\ 0,4 \\ 0,4 \\ 0,4 \\ 0,3 \\ 0,4 \\ 1,2 \\ 1,6 \\ \hline \\ \Delta \ Kqt \\ [^{o}] \\ 1,0 \\ 0,7 \\ 0,4 \\ 0,4 \\ 0,3 \\ 0,4 \\ 0,$			
0,2 0,5 1 2 5 10 20 30 Hz 0,2 0,5 1 2 5 10 20	2155 3058 3912 4933 6546 7903 9548 11226 E1 [MPa] 670 967 1278 1711 2505 3302 4362	[,iiii d] 1576 1989 2300 2600 2959 3159 3174 4465 E2 [MPa] 640 888 1126 1415 1865 2228 2474	2670 3648 4539 5577 7184 8511 10064 12086 Temper E [MPa] 927 1313 1703 2220 3123 3983 5015	36,2 33,1 30,5 27,8 24,4 21,8 18,4 21,5 atura 30 Kąt [°] 43,8 42,6 41,4 39,6 36,7 34,1 29,6	μm/m 51,0 51,1 51,1 51,5 51,5 51,1 51,2 °C ε μm/m 50,9 51,1 51,2 °C 50,9 51,1 51,2 °C 50,9 51,1 51,2 50,9 51,4 52,2	425,7 594,7 740,7 928,8 1210,2 1420,0 1560,3 2177,5 Δ Ε [MPa] 157,4 217,8 286,0 372,7 532,0 685,6 798,2	$\begin{array}{c} 1 \\ 0,5 \\ 0,4 \\ 0,4 \\ 0,4 \\ 0,3 \\ 0,4 \\ 1,2 \\ 1,6 \\ \hline \\ \Delta \text{ Kqt} \\ \hline \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ 1,0 \\ 0,7 \\ 0,4 \\ 0,4 \\ 0,4 \\ 0,3 \\ 0,4 \\ 0,5 \\ \end{array}$			

Tablica 29 Wyniki badania modułu zespolonego metodą 4PB mieszanki AC 22 P 50/70

Temperatura 0 °C										
<u>ц</u> ,	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]			
0,2	12579	2789	12885	12,4	51,1	2381,5	0,7			
0,5	14416	2732	14673	10,7	50,8	2732,8	0,5			
1	15825	2678	16050	9,5	50,9	3046,4	0,6			
2	17086	2598	17283	8,6	51,2	3343,7	0,6			
5	18730	2471	18893	7,5	51,0	3729,5	0,6			
10	19916	2366	20057	6,7	47,9	3985,9	0,7			
20	21193	40	21196	0,2	47,9	4155,9	1,2			
30	26988	7250	27948	14,9	51,1	5995,3	0,9			
			Temper	atura 10	°C					
LI →	E1	E2	Е	Kąt	3	$\Delta \mathbf{E}$	∆ Kąt			
ΠΖ	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]			
0,2	5286	2423	5816	24,6	51,1	837,3	1,3			
0,5	6813	2698	7329	21,5	51,1	1121,3	1,2			
1	8090	2855	8580	19,4	51,1	1359,1	1,1			
2	9405	2966	9863	17,4	51,0	1613,2	1,0			
5	11207	3041	11613	15,1	51,0	1966,0	0,9			
10	12642	3046	13005	13,5	51,2	2223,2	0,8			
20	14168	2545	14399	10,2	48,9	2332,3	1,6			
30	18121	5232	18864	16,2	50,2	2995,2	1,1			
Temperatura 20 °C										
Ц-7	E1	E2	ш	Kąt	ε	ΔE	∆ Kąt			
112	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]			
0,2	1403	1183	1836	40,0	51,0	325,1	1,7			
0,5	2055	1563	2582	37,1	51,0	460,6	1,5			
1	2707	1886	3300	34,7	51,1	600,3	1,4			
2	3503	2208	4142	32,1	51,2	762,8	1,3			
5	4856	2631	5524	28,3	50,9	1021,2	1,3			
10	6066	2905	6727	25,5	51,6	1274,9	1,3			
20	7721	2813	8224	19,8	52,5	1635,9	2,6			
30	9001	4178	9928	24,6	52,2	2118,9	2,1			
			Tempera	atura 30	°C					
	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
пΖ	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]			
0,2	465	428	632	42,8	51,0	112,7	1,5			
0,5	648	601	884	42,9	50,9	140,4	1,1			
1	847	781	1152	42,7	51,0	185,4	0,7			
2	1131	1017	1521	42,0	51,2	243,8	0,6			
5	1684	1410	2196	39,9	51,0	358,0	0,7			
10	2262	1750	2860	37,7	51,3	475,9	0,7			
20	3092	2108	3742	34,2	52,2	702,9	0,6			
30	3458	2353	4184	34,2	52,2	772,8	1,4			

Tablica 30 Wyniki badania modułu zespolonego metodą 4PB mieszanki AC 16 W DE30B

Temperatura 0 °C										
<u>ц</u> -	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
112	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]			
0,2	14587	2467	14795	9,6	51,4	3057,6	0,3			
0,5	16191	2377	16365	8,4	51,3	3333,0	0,2			
1	17273	2294	17425	7,6	51,4	3559,2	0,1			
2	18306	2203	18438	6,9	51,6	3780,3	0,1			
5	19650	2075	19759	6,0	51,1	4052,0	0,1			
10	20603	1922	20692	5,4	48,8	4264,4	0,2			
20	22485	-479	22499	-1,2	49,1	4702,3	1,9			
30	28412	5585	28961	11,3	51,7	5979,4	1,2			
			Temper	atura 10	°C					
Hz	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
112	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]			
0,2	7939	2512	8327	17,5	51,4	1860,9	0,3			
0,5	9534	2614	9886	15,3	51,4	2221,8	0,3			
1	10778	2660	11101	13,9	51,4	2494,4	0,3			
2	11957	2670	12252	12,6	51,2	2735,7	0,4			
5	13528	2673	13789	11,2	51,4	3056,3	0,4			
10	14771	2624	15003	10,1	51,4	3315,5	0,4			
20	16502	1477	16569	5,3	50,0	3925,6	1,0			
30	19747	3918	20152	11,4	52,6	4389,9	3,1			
Temperatura 20 °C										
Hz	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[⁰]			
0,2	2964	1676	3405	29,5	51,4	729,3	0,1			
0,5	3956	1982	4425	26,6	51,4	954,0	0,2			
1	4853	2198	5327	24,4	51,4	1160,2	0,3			
2	5851	2398	6323	22,3	51,4	1379,9	0,3			
5	7336	2618	7790	19,6	51,5	1694,4	0,3			
10	8556	2754	8988	17,8	51,5	1949,7	0,3			
20	9833	2248	10087	12,8	51,6	2091,4	0,3			
30	11573	3779	12175	18,1	51,6	2570,6	0,6			
			Temper	atura 30	°C	_				
Hz	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[`]			
0,2	933	725	1182	37,8	51,5	235,1	0,2			
0,5	1289	961	1608	36,7	51,5	323,2	0,2			
	1652	1174	2027	35,4	51,6	413,4	0,2			
2	2124	1422	2556	33,8	51,6	519,4	0,3			
5	2951	1/88	3450	31,2	51,6	/01,0	0,3			
10	3/18	2066	4254	29,0	51,9	8/0,2	0,3			
20	46/5	2170	5155	24,9	52,4	1147,6	0,5			
30	5091	2665	5/4/	21,1	52,7	1212,8	0,6			

	Temperatura 0 °C									
⊔-7	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
п∠	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]			
0,1	11451	2556	11734	12,5	37,4	2360,2	0,6			
0,2	11533	2632	11830	12,8	51,6	2327,3	0,7			
0,5	13277	2609	13531	11,1	51,4	2691,8	0,6			
1	14583	2575	14809	10,0	51,5	2957,4	0,5			
2	15801	2508	15999	9,0	51,6	3236,0	0,4			
5	17439	2408	17604	7,8	51,6	3604,1	0,4			
10	18517	2279	18657	7,0	49,2	3834,3	0,4			
20	19530	1269	19576	3,5	49,7	3544,6	1,4			
			Tempera	atura 10	°C					
Н7	E1	E2	ш	Kąt	3	ΔE	∆ Kąt			
112	[MPa]	[MPa]	[MPa]	[°]	µm/m	[MPa]	[°]			
0,2	6120	2487	6606	22,1	51,4	1341,4	0,4			
0,5	7713	2700	8172	19,3	51,5	1637,1	0,3			
1	8992	2814	9422	17,4	51,4	1877,8	0,3			
2	10246	2870	10640	15,6	51,3	2135,5	0,3			
5	11960	2900	12306	13,6	51,4	2451,0	0,2			
10	13364	2873	13669	12,1	51,2	2726,8	0,1			
20	15917	1572	16002	5,7	49,4	3815,5	2,2			
30	18225	3950	18661	12,4	51,6	3983,8	2,5			
Temperatura 20 °C										
Hz	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
112	[MPa]	[MPa]	[MPa]	[°]	µm/m	[MPa]	[°]			
0,2	1703	1303	2145	37,4	51,4	382,0	0,7			
0,5	2471	1662	2978	33,9	51,3	554,1	0,6			
1	3196	1945	3741	31,3	51,4	706,5	0,5			
2	4065	2226	4635	28,6	51,4	885,6	0,5			
5	5467	2562	6038	25,1	51,3	1167,0	0,4			
10	6686	2778	7240	22,5	52,1	1404,9	0,3			
20	8448	2328	8767	15,3	52,7	1787,8	1,9			
30	9363	3724	10078	21,6	51,9	1977,7	1,1			
			Tempera	atura 30	°C					
Hz	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
112	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]			
0,2	480	442	653	42,7	51,4	139,2	1,4			
0,5	678	617	917	42,4	51,4	185,9	0,8			
1	892	797	1197	41,8	51,5	235,3	0,6			
2	1200	1029	1581	40,6	51,6	312,5	0,4			
5	1768	1397	2253	38,3	51,5	442,3	0,3			
10	2361	1720	2921	36,1	51,8	576,5	0,2			
20	3253	2004	3821	31,6	52,6	862,5	0,8			
30	3470	2299	4162	33,6	52,7	796,1	0,4			

Tablica 31 Wyniki badania modułu zespolonego metodą 4PB mieszanki AC 16 W 35/50

Tablica 32 Wyniki badania modułu zespolonego metodą 4PB mieszanki AC 16 W 50/70

Temperatura 0 °C										
□-	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
112	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]			
0,2	8465	2319	8777	15,3	56,9	254,8	0,3			
0,5	9961	2345	10233	13,2	56,9	313,6	0,2			
1	11108	2327	11349	11,8	57,0	369,5	0,3			
2	12216	2289	12429	10,6	57,0	408,1	0,3			
5	13626	2248	13811	9,4	57,4	473,7	0,3			
10	14794	2165	14952	8,3	55,8	486,5	0,2			
20	16462	1089	16502	3,8	54,1	675,0	1,4			
30	19632	4678	20201	13,3	57,2	975,5	3,0			
			Tempera	atura 10	°C					
H7	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
112	[MPa]	[MPa]	[MPa]	[°]	µm/m	[MPa]	[°]			
0,2	3564	1825	4004	27,1	57,1	34,1	0,8			
0,5	4721	2079	5159	23,8	57,1	47,8	0,8			
1	5688	2242	6114	21,5	57,1	52,8	0,8			
2	6699	2357	7102	19,4	57,0	61,1	0,8			
5	8154	2465	8519	16,8	57,2	123,5	0,7			
10	9337	2502	9667	15,0	57,3	141,5	0,7			
20	11180	1321	11273	6,8	57,4	501,3	3,5			
30	13313	4458	14050	18,5	58,1	708,3	2,5			
Temperatura 20 °C										
H7	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
112	[MPa]	[MPa]	[MPa]	[°]	µm/m	[MPa]	[°]			
0,2	907	813	1218	41,9	56,9	65,8	0,8			
0,5	1335	1095	1727	39,4	56,9	70,3	0,7			
1	1773	1336	2220	37,0	57,0	76,1	0,7			
2	2338	1594	2830	34,3	57,0	87,8	0,7			
5	3285	1929	3810	30,4	56,9	93,7	0,7			
10	4142	2155	4669	27,5	57,5	95,8	0,7			
20	5258	2135	5676	22,1	59,3	187,8	1,0			
30	6129	2889	6778	25,3	57,5	415,0	1,7			
			Temper	atura 30	°C					
H7	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
112	[MPa]	[MPa]	[MPa]	[°]	µm/m	[MPa]	[°]			
0,2	315	368	484	49,3	57,0	81,6	2,3			
0,5	427	493	653	49,0	57,0	79,2	2,2			
1	548	623	830	48,5	57,1	79,0	2,0			
2	730	786	1074	47,0	57,2	74,7	1,6			
5	1096	1077	1537	44,5	56,9	71,6	1,3			
10	1497	1344	2012	41,9	57,3	77,0	1,3			
20	2024	1557	2554	37,5	58,1	93,6	1,4			
30	2346	1911	3027	39,2	57,2	151,4	1,8			

Tablica 33 Wyniki badania modułu zespolonego metodą 4PB mieszanki AC 22 W DE30B

Temperatura 0 °C										
<u>Ц-</u>	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
пΖ	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]			
0,2	11380	1977	11551	9,8	57,5	1030,1	0,3			
0,5	12689	1911	12832	8,6	57,3	1183,9	0,2			
1	13681	1863	13807	7,7	57,4	1252,4	0,2			
2	14551	1790	14661	7,0	57,6	1367,5	0,1			
5	15728	1682	15818	6,1	57,3	1453,4	0,1			
10	16586	1601	16663	5,5	54,6	1575,7	0,2			
20	17988	-40	18009	0,0	55,6	1997,0	3,2			
30	23608	4132	23972	10,0	55,5	2946,9	1,5			
			Tempera	atura 10	°C					
Н7	E1	E2	ш	Kąt	3	ΔE	∆ Kąt			
112	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]			
0,2	6328	2082	6663	18,3	57,4	746,9	1,4			
0,5	7619	2170	7923	16,0	57,4	820,8	1,1			
1	8592	2198	8870	14,4	57,4	885,7	0,9			
2	9567	2197	9817	13,0	57,4	926,4	0,8			
5	10881	2180	11098	11,3	57,6	1005,3	0,6			
10	11926	2125	12114	10,1	57,6	1063,1	0,5			
20	13883	748	13909	3,1	57,5	1538,3	1,9			
30	16360	3499	16732	12,0	57,4	1805,9	1,0			
Temperatura 20 °C										
Hz	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
112	[MPa]	[MPa]	[MPa]	[°]	µm/m	[MPa]	[°]			
0,2	2380	1388	2755	30,3	57,4	246,5	0,9			
0,5	3181	1654	3586	27,5	57,4	319,8	0,7			
1	3902	1839	4314	25,3	57,5	386,6	0,7			
2	4723	2006	5131	23,0	57,4	457,6	0,6			
5	5950	2199	6343	20,3	57,5	571,2	0,5			
10	6984	2296	7352	18,2	57,6	653,5	0,4			
20	8585	1670	8747	11,0	58,9	785,1	0,9			
30	9648	2907	10077	16,8	57,5	955,0	0,9			
			Temper	atura 30	°C					
Н7	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
112	[MPa]	[MPa]	[MPa]	[°]	µm/m	[MPa]	[°]			
0,2	779	629	1002	39,0	57,4	114,9	1,2			
0,5	1097	832	1376	37,2	57,4	147,7	1,0			
1	1415	1013	1740	35,7	57,5	184,0	0,8			
2	1817	1218	2187	33,9	57,6	227,7	0,7			
5	2527	1520	2949	31,1	57,5	308,3	0,7			
10	3197	1745	3642	28,7	57,9	382,5	0,6			
20	4118	1838	4510	24,1	58,5	551,0	0,4			
30	4617	2102	5076	24,6	58,7	581,9	2,0			

Tablica 34 Wyniki badania modułu zespolonego metodą 4PB mieszanki AC 22 W 35/50

Temperatura 0 °C										
U	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
ΠZ	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]			
0,2	10480	2184	10706	11,8	57,6	887,7	0,5			
0,5	11904	2118	12091	10,1	57,4	1023,0	0,4			
1	12962	2061	13125	9,0	57,5	1119,9	0,4			
2	13921	1974	14061	8,1	57,7	1225,4	0,3			
5	15167	1868	15282	7,0	57,5	1312,9	0,4			
10	16091	1739	16185	6,2	53,7	1429,1	0,4			
20	17450	357	17472	1,2	54,1	1514,4	3,0			
30	22210	5079	22797	12,7	56,1	2845,0	2,4			
			Tempera	atura 10	°C					
U	E1	E2	Е	Kąt	3	$\Delta \mathbf{E}$	∆ Kąt			
п∠	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]			
0,2	5180	2109	5593	22,1	57,4	365,0	0,6			
0,5	6513	2287	6903	19,3	57,3	496,2	0,6			
1	7567	2363	7928	17,3	57,3	626,9	0,5			
2	8628	2396	8955	15,5	57,2	747,5	0,5			
5	10055	2400	10338	13,4	57,6	923,6	0,4			
10	11258	2371	11505	11,9	57,3	1105,0	0,5			
20	13782	563	13794	2,4	55,9	1347,0	0,6			
30	15221	3377	15594	12,4	57,8	1542,5	1,3			
Temperatura 20 °C										
<u>ц</u> ,	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
112	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]			
0,2	1455	1129	1842	37,9	57,5	153,2	0,8			
0,5	2113	1440	2557	34,3	57,6	199,2	0,9			
1	2742	1684	3218	31,6	57,7	244,2	0,8			
2	3491	1911	3980	28,7	57,6	305,8	0,9			
5	4675	2177	5157	25,0	57,6	403,1	0,8			
10	5698	2338	6160	22,3	58,0	479,7	0,7			
20	6851	2157	7185	17,5	59,0	524,7	1,5			
30	8111	3076	8694	20,6	56,9	613,5	4,4			
			Tempera	atura 30	°C					
<u>ц</u> -	E1	E2	Е	Kąt	3	ΔE	∆ Kąt			
112	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]			
0,2	456	443	637	44,4	57,4	57,3	3,6			
0,5	650	612	893	43,4	57,3	56,0	3,1			
1	849	777	1152	42,5	57,4	60,2	2,9			
2	1131	981	1498	40,9	57,5	82,0	2,5			
5	1673	1310	2126	38,1	57,4	126,3	2,2			
10	2217	1583	2726	35,5	57,8	185,1	1,8			
20	2912	1773	3410	31,3	58,0	287,6	1,7			
30	3251	2105	3875	32,9	58,6	360,9	2,0			

Tablica 35 Wyniki badania modułu zespolonego metodą 4PB mieszanki AC 22 W 50/70

Temperatura 0 °C										
Ц7	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
ΠZ	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]			
0,2	9139	2458	9465	15,1	57,5	571,3	1,1			
0,5	10606	2447	10886	13,0	57,2	600,8	0,9			
1	11832	2444	12083	11,7	57,3	601,1	0,9			
2	12994	2416	13217	10,6	57,5	569,5	0,9			
5	14536	2327	14723	9,1	57,3	559,6	0,8			
10	15706	2195	15859	8,0	53,9	478,2	0,7			
20	17668	445	17674	1,4	53,8	419,6	0,2			
30	22987	5011	23530	12,3	57,0	1161,2	0,9			
	-		Temper	atura 10	°C		-			
Hz	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
112	[MPa]	[MPa]	[MPa]	[°]	µm/m	[MPa]	[°]			
0,2	3818	1904	4267	26,6	57,4	399,8	1,0			
0,5	5013	2157	5458	23,3	57,5	479,8	0,9			
1	6029	2319	6460	21,1	57,4	534,4	0,8			
2	7094	2429	7499	18,9	57,5	586,5	0,8			
5	8584	2521	8947	16,4	57,6	676,1	0,7			
10	9761	2551	10090	14,7	57,8	733,4	0,6			
20	10909	2090	11107	10,9	56,1	755,4	0,4			
30	12983	4367	13698	18,6	55,9	1098,1	0,4			
Temperatura 20 °C										
Hz	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]			
0,2	965	850	1286	41,4	57,4	137,4	1,0			
0,5	1436	1140	1833	38,5	57,3	172,3	0,9			
1	1918	1396	2372	36,1	57,4	207,0	1,0			
2	2530	1661	3027	33,3	57,5	246,1	1,0			
5	3541	1999	4067	29,5	57,2	326,0	0,9			
10	4451	2221	4975	26,5	57,8	388,8	0,8			
20	5581	2184	5993	21,4	58,8	384,1	0,7			
30	6176	2944	6843	25,4	58,0	590,8	1,2			
	1		Temper	atura 30	°C	1	1			
Hz	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
	[MPa]	[MPa]	[MPa]	[°]	μm/m	[MPa]	[°]			
0,2	306	294	425	43,9	57,5	46,5	2,0			
0,5	433	419	602	44,1	57,4	58,2	1,6			
1	571	552	794	44,1	57,6	68,0	1,6			
2	755	721	1044	43,7	57,7	89,3	1,4			
5	1141	1023	1532	41,9	57,5	121,3	1,2			
10	1553	1295	2022	39,8	57,9	163,1	1,2			
20	2160	1506	2633	34,9	58,8	153,2	1,1			
30	2390	1813	3000	37,2	58,7	222,4	0,9			

7.3. Metoda ściskania rozciągania TC (Zadanie 5)

Wyniki badań sztywności metodą TC poszczególnych mieszanek mineralno-asfaltowych przedstawiono w tablicach 36 - 45.

Tablica 36 Wyniki badania modułu zespolonego metodą TC mieszanki ACWMS 11 DE30B

Temperatura -10 °C									
0	E1	E2	Е	Kąt	ε	ΔE	∆ Kąt		
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[o]		
0,1	41202	5453	41563	7,6	12	3215	0,6		
0,3	44689	5190	44990	6,6	12	3035	0,6		
1	48586	4743	48818	5,6	12	2665	0,5		
3	51961	4087	52124	4,5	12	2514	0,6		
10	55597	2244	55647	2,3	12	2397	1,0		
20	57966	60	57986	0,1	12	2581	1,8		
0,1	40843	5493	41213	7,7	12	2629	0,6		
			Tempera	atura 0 °C	;				
	E1	E2	Е	Kąt	ω	ΔE	∆ Kąt		
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[0]		
0,1	28156	5762	28739	11,6	12	604	0,2		
0,3	32296	5746	32803	10,1	12	628	0,1		
1	36782	5576	37202	8,6	12	776	0,1		
3	40732	5138	41055	7,2	12	959	0,1		
10	45068	3792	45227	4,8	12	1038	0,2		
20	48320	2016	48363	2,4	12	1145	0,2		
0,1	28691	5741	29260	11,3	12	722	0,3		
			Tempera	tura 10 °(C				
	E1	E2	E	Kat	3	ΔE	∆ Kąt		
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[0]		
0,1	15400	5087	16218	18,3	12	1128	0,5		
0,3	19064	5515	19846	16,1	12	1277	0,4		
1,0	23406	5801	24115	13,9	12	1572	0,3		
3,0	27698	5749	28289	11,7	12	1875	0,3		
10,0	32648	4741	32992	8,3	12	2310	0,6		
20,0	35776	3011	35908	4,8	12	2511	1,1		
0,1	15464	5065	16273	18,1	12	1157	0,3		
			Tempera	tura 20 °0	0				
	E1	E2	E	Kąt	3	ΔE	∆ Kąt		
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[o]		
0,1	5668	2995	6412	27,9	12	526	1,5		
0,3	7758	3722	8606	25,7	12	539	1,3		
1	10821	4541	11737	22,8	12	537	1,1		
3	14206	5112	15100	19,8	12	563	1,1		
10	18578	5220	19302	15,7	12	569	1,5		
20	21519	4616	22023	12,1	12	608	2,4		
0,1	5659	2938	6377	27,5	12	421	1,1		
			Tempera	tura 30 °(C				
	E1	E2	E	Kąt	3	ΔE	∆ Kąt		
Hz	[MPa]	[MPa]	[MPa]	[0]	μm/m	[MPa]	[0]		
0,1	1935	1268	2313	33,3	12	128	1,2		
0,3	2806	1811	3340	32,8	12	129	1,1		
1	4228	2584	4955	31,4	12	179	1,0		
3	6150	3386	7021	28,8	12	258	0,9		
10	9096	4131	9992	24,4	12	389	1,2		
20	11290	4232	12062	20,6	12	469	1,9		
0,1	1879	1197	2228	32,5	12	118	1,1		

Tablica 37 Wyniki badania modułu zespolonego metodą TC mieszanki ACWMS <u>11 20/30</u>

	Temperatura -10 °C									
	E1	E2	Е	Kąt	3	ΔE	∆ Kąt			
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[o]			
0,1	43155	5475	43501	7,2	12	2195	0,4			
0,3	46762	5217	47053	6,4	12	2309	0,4			
1	50595	4780	50821	5,4	12	2221	0,4			
3	54007	4069	54162	4,3	12	2132	0,5			
10	57818	2010	57861	2,0	12	1826	1,1			
20	59611	-1010	59635	-0,9	12	3078	1,5			
0,1	42778	5455	43125	7,3	12	1646	0,4			
			Tempera	tura 0 ⁰C						
	E1	E2	Е	Kąt	3	ΔE	∆ Kąt			
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[0]			
0,1	30311	5700	30842	10,7	12	1193	0,2			
0,3	34298	5609	34754	9,3	12	1158	0,2			
1	38747	5424	39125	8,0	12	1221	0,1			
3	42816	4998	43107	6,7	12	1412	0,3			
10	47364	3476	47494	4,2	12	1641	0,7			
20	50263	1348	50292	1,5	12	1966	1,4			
0,1	30892	5680	31410	10,4	12	892	0,2			
			Temperat	ura 10 °C)					
	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[o]			
0,1	17791	5247	18549	16,4	12	546	0,1			
0,3	21542	5554	22246	14,5	12	676	0,1			
1,0	25926	5732	26553	12,5	12	780	0,1			
3,0	30139	5634	30661	10,6	12	843	0,1			
10,0	35097	4707	35412	7,6	12	901	0,3			
20,0	38334	3079	38460	4,6	12	945	0,8			
0,1	18000	5219	18741	16,2	12	588	0,1			
		-	Temperat	ura 20 °C)		-			
	E1	E2	Е	Kąt	3	ΔE	∆ Kąt			
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[o]			
0,1	7545	3440	8292	24,5	12	289	0,6			
0,3	9972	4096	10781	22,3	12	399	0,6			
1	13263	4772	14096	19,8	12	589	0,4			
3	16842	5204	17627	17,2	12	765	0,3			
10	21413	5035	21998	13,2	12	916	0,6			
20	24473	4021	24805	9,3	12	1105	1,1			
0,1	7428	3378	8160	24,4	12	268	0,7			
			Temperat	ura 30 °C)					
	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[0]			
0,1	2503	1699	3026	34,2	12	215	1,6			
0,3	3701	2323	4371	32,1	12	253	1,4			
1	5588	3166	6424	29,5	12	330	1,0			
3	7991	3966	8922	26,4	12	401	0,7			
10	11516	4529	12375	21,5	12	534	0,6			
20	14099	4347	14754	17,1	12	617	0,7			
0,1	2476	1623	2961	33,3	12	199	1,6			

Tablica 38 Wyniki badania modułu zespolonego metodą TC mieszanki ACWMS <u>16 DE30B</u>

Temperatura -10 °C									
	E1	E2	E	Kąt	3	ΔE	∆ Kąt		
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[0]		
0,1	44335	5725	44708	7,4	12	2207	1,0		
0,3	48131	5272	48421	6,3	12	2348	0,8		
1	51903	4695	52118	5,2	12	2315	0,8		
3	55255	3896	55396	4,0	12	2319	0,8		
10	59090	1538	59128	1,5	12	2340	1,7		
20	62148	-2742	62237	-2,6	8	3493	2,5		
0,1	44858	5419	45185	6,9	12	2022	0,3		
Temperatura 0 °C									
E1 E2 E Kat s AE AKat									
Hz	[MPa]	[MPa]	[MPa]	[0]	um/m	[MPa]	[0]		
0.1	29010	6079	29652	12.0	12	3681	2.3		
0.3	33048	6012	33599	10.4	12	3704	1.9		
1	37515	5772	37964	88	12	3594	1,5		
3	41604	5219	41936	7.2	12	3311	1,0		
10	46294	3472	46430	4.3	12	2972	1.4		
20	49497	741	49513	0.9	10	2414	1,1		
0.1	31724	5807	32251	10.4	12	3540	22		
0,1	01724	0007	Ter	nperati	ra 10 °C	0040	2,2		
	F1	F2	F	Kat		^ E	۸ Kat		
H7		[MPa]	[MPa]		ъ um/m				
0.1	15306	[IVIF a]	16108	10.2	μπ/m 12	[WFa] 1817	1.0		
0,1	20381	5754	20642	19,2	12	1388	1,0		
1.0	20301	5871	2/058	14.2	12	2013	0,2		
3.0	23323	57/3	29030	11.8	12	2013	0,3		
10.0	32680	1580	33000	8.0	12	2105	0,1		
20.0	36105	2570	36108	0,0 ⊿ 1	12	2120	0,4		
20,0	152/2	5186	16102	18.0	12	1728	0,0		
0,1	10272	0100	10102 Tor	nnerati	12 112 20 °C	1720	1,1		
	E4	ED		Inperate Kat		A E	A Kat		
U-7				rąi	3		∆ r.ąi		
ΠZ					μ m/m	[IVIPa]	[0]		
0,1	0430	3137	10207	20,0	12	756	0,9		
0,3	9439	4137	10307	23,7	12	904	1,0		
1	12170	4000	15109	21,0	12	490	1,0		
3	10020	5320	10942	19,0	12	1411	1,2		
20	19004	3427	20404	10,0	12	1404	1,4		
20	22039	4///	23340	11,9	12	1404	1,7		
0,1	0221	3015	0913	25,9		014	0,7		
	E1			Kąt	3		∆ Kąt		
				[0]	$\mu m/m$		[0]		
0,1	2396	1525	2841	32,5	12	15	1,0		
0,3	3319	2085	3919	32,1	12	34	0,7		
1	4948	2952	5/61	30,8	11	149	0,1		
3	/11/	38/6	8104	28,6	12	157	0,1		
10	10429	4698	11438	24,3	12	187	0,2		
20	13026	4785	13877	20,2	12	269	0,4		
0,1	2263	1421	2672	32,1	12	/9	1,6		

Tablica 39 Wyniki badania modułu zespolonego metodą TC mieszanki ACWMS <u>16 20/30</u>

Temperatura -10 °C									
	E1	E2	E	Kąt	3	ΔE	∆ Kąt		
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[0]		
0,1	48223	5339	48517	6,3	12	1203	1,0		
0,3	52001	5131	52253	5,6	12	1348	0,8		
1,0	55765	4509	55947	4,6	12	1215	0,9		
3,0	58997	3740	59116	3,6	12	1336	0,8		
10,0	62600	1510	62618	1,4	12	1343	1,2		
20,0	65160	-1408	65175	-1,2	12	1496	2,1		
0,1	48098	5354	48395	6,4	12	1022	0,3		
Temperatura 0 °C									
	E1	E2	E	Kat	3	ΔΕ	∆ Kat		
Hz	[MPa]	[MPa]	[MPa]	[0]	um/m	[MPa]	[0]		
0.1	33174	5852	33686	10.0	12	1548	1.8		
0.3	37478	5982	37952	9.1	12	1711	1,9		
1	42004	5745	42395	7.8	12	1596	1,3		
3	45187	5278	45494	67	12	1321	1,6		
10	50555	4387	50745	5.0	12	976	1,5		
20	52317	2975	52402	33	12	434	1,8		
0.1	30492	4864	30877	9.1	11	1530	1,0		
0,1	00102	1001	Ter	nperati	ura 10 °C	1000	1,2		
	F1	E2	F	Kat		^ E	∧ Kat		
Hz	[MPa]	[MPa]	[MPa]	[0]	с um/m				
0.1	18646	5499	19442	16.5	μπ/m 12	888	1 1		
0,1	22515	5708	23220	14.2	12	931	0.8		
1.0	26889	5811	27511	12.2	12	745	0,0		
3.0	31171	5632	31677	10.2	12	740	0,0		
10.0	36063	4425	36334	7.0	12	764	0.4		
20.0	39406	2223	39470	32	10	1274	0,4		
0.1	18317	5363	19088	16.3	12	137	1.2		
0,1	10011	0000	Ter	nnerati	ra 20 °C	107	1,2		
	E 1	E2	F	Kat		^ E	A Kat		
H 7				r.ąi [o]	ъ um/m				
0.1	[IVIFa] 9150	2017		25.1	μπ/m 12		[0]		
0,1	10924	3017	9009	20,1	12	147	1,0		
0,3	14405	4010 5006	15217	22,0	12	175	0,0		
2	19296	5200	10121	19,9	12	410 562	0,5		
10	23050	5237	23638	12.8	12	670	0,3		
20	20000	4060	25050	8.8	12	079	0,7		
20	7901	2600	20370	25.1	12	322	1,3		
0,1	7091	3099	 	20,1	12 12	200	0,7		
F1 F2 F Kat a AF AKat									
LI-7				กลุเ [อ]	8				
		[WIF8]	[IVIF8]	22 4	μm/m 12	[IVIFd]	[U]		
0,1	2992	1092	304U 4070	21 4	12	383 470	1,0		
0,3	410Z	2029	40/U	১।,4 ১০.4	14	41Z	1,1		
2	0222	0400 4204	0770	29,1	10	397 710	1.2		
10	12511	4021	3110	20,3	12	604	1,3		
20	12011	4909	16224	21,0 16.0	0	716	1,4		
0.1	2767	1750	3270	32.5	छ 10	210	1,0		
U, I	2101	1/09	5219	ປ∠,ປ	14	310	0,9		

Tablica 40 Wyniki badania modułu zespolonego metodą TC mieszanki AC 16 P <u>DE30B</u>

Temperatura -10 °C									
	E1	E2	E	Kąt	3	ΔΕ	∆ Kątt		
Hz	[MPa]	[MPa]	[MPa]	[0]	mm/m				
0,1	43091	5222	43408	6,9	12	2158	0,6		
0,3	46373	4861	46628	6,0	12	1931	0,5		
1	49564	4301	49752	5,0	11	1655	0,4		
3	52497	3609	52622	3,9	12	1511	0,3		
10	55873	1793	55905	1,8	11	1314	0,7		
20	57945	-1053	57968	-1,1	9	1940	1,5		
0,1	42107	5250	42436	7,1	12	1741	0,8		
Temperatura 0 °C									
	E1	E2	E	Kąt	3	ΔE	∆ Kąt		
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[0]		
0,1	30690	6067	31285	11,2	12	1505	0,3		
0,3	34837	5811	35318	9,5	12	1713	0,2		
1	39276	5464	39654	7,9	12	1952	0,2		
3	43203	4864	43476	6,4	12	2139	0,1		
10	47570	2970	47663	3,6	12	2349	0,3		
20	50390	808	50402	0,9	9	2882	1,0		
0,1	31001	5866	31551	10,7	12	1637	0,4		
	Temperatura 10 °C								
	E1	E2	E	Kąt	3	ΔE	∆ Kat		
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[0]		
0,1	16618	5169	17405	17,3	12	857	0,9		
0,3	20239	5487	20971	15,2	12	952	0,8		
1,0	24426	5652	25073	13,0	12	1043	0,7		
3,0	28443	5566	28985	11,1	12	1094	0,7		
10,0	33398	4717	33732	8,1	12	1800	0,9		
20,0	35716	3324	35878	5,3	12	1159	1,4		
0,1	16427	5019	17179	17,0	12	1118	1,1		
			Temperat	ura 20 °C	;				
	E1	E2	E	Kąt	3	ΔE	∆ Kąt		
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m				
0,1	8049	3643	8836	24,3	12	771	0,5		
0,3	10373	4314	11235	22,6	12	975	0,8		
1	13665	5080	14582	20,4	12	1197	1,2		
3	17323	5581	18203	17,9	12	1469	1,3		
10	22060	5393	22712	13,7	12	1876	0,8		
20	25419	4197	25764	9,4	12	2100	0,6		
0,1	7510	3456	8268	24,7	12	520	0,8		
Temperatura 30 °C									
	E1	E2	E	Kąt	3	ΔE	∆ Kąt		
Hz	[MPa]	[MPa]	[MPa]	[0]	μm/m				
0,1	2337	1492	2774	32,6	12	18	2,6		
0,3	3280	2067	3879	32,2	12	120	2,0		
1	4811	2891	5614	31,0	13	286	1,5		
3	6930	3740	7876	28,3	12	496	1,1		
10	10108	4494	11063	23,9	13	907	0,8		
20	12493	4550	13298	20,0	12	1003	1,3		
0,1	2184	1379	2585	32,3	12	48	2,8		

Tablica 41 Wyniki badania modułu zespolonego metodą TC mieszanki AC 16 P 35/50

Temperatura -10 °C										
	E1	E2	E	Kąt	3	ΔE	∆ Kąt			
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[0]			
0,1	45888	5878	46264	7,3	12	3096	0,6			
0,3	49729	5520	50036	6,4	12	3040	0,6			
1,0	53795	4957	54024	5,3	12	2916	0,5			
3,0	57795	4259	57953	4,2	12	2194	0,4			
10,0	61318	2390	61367	2,2	12	2777	0,7			
20,0	63975	330	63986	0,3	12	2990	1,3			
0,1	45597	6001	45992	7,5	12	2790	0,6			
Temperatura 0 °C										
	E1	E2	Е	Kat	3	ΔE	∆ Kạt			
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[0]			
0,1	30812	6587	31511	12,1	12	1947	0,9			
0,3	35480	6520	36076	10,4	12	1824	0,7			
1,0	40419	6189	40891	8,7	12	1707	0,5			
3,0	44891	5529	45232	7,0	12	1683	0,4			
10,0	49900	3362	50015	3,9	12	1581	0,5			
20,0	53011	745	53017	0,8	12	1658	0,3			
0,1	31065	6575	31756	12,0	12	1653	0,8			
			Temperat	ura 10 °C)					
	E1	E2	E	Kat	3	ΔΕ	∆ Kat			
Hz	[MPa]	[MPa]	[MPa]	[0]	um/m	[MPa]	[0]			
0,1	15269	5828	16344	20,9	12	385	0.3			
0.3	18997	6293	20012	18.3	12	784	0.1			
1,0	23842	6617	24744	15,5	12	979	0,1			
3,0	28668	6601	29419	13,0	12	1157	0,3			
10,0	34209	5763	34695	9,5	12	1341	1,1			
20,0	37866	4344	38130	6,5	12	1336	2,0			
0,1	14805	5717	15871	21,1	12	613	0,2			
			Temperat	ura 20 °C)					
E1 E2 E Kat & AF A							∆ Kat			
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[0]			
0,1	4847	3169	5791	33.2	12	401	0,7			
0,3	6926	4144	8072	30,9	12	435	0,6			
1,0	10228	5285	11514	27,3	12	504	0,8			
3,0	14261	6147	15531	23,3	12	498	0,9			
10,0	19641	6342	20643	17,9	12	372	1,3			
20,0	23520	5705	24211	13,6	12	112	2,0			
0,1	10537	4194	11461	27,8	12	10181	10,3			
Temperatura 30 °C										
E1 E2 Ε Kąt ε ΔΕ ΔKat										
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[0]			
0,1	1265	1046	1643	39,7	12	160	3,2			
0,3	1912	1603	2497	40,0	12	192	2,7			
1,0	3092	2490	3971	38,8	12	326	1,8			
3,0	4945	3559	6093	35,7	12	516	1,2			
10,0	8118	4666	9365	29,9	12	800	1,1			
20,0	10699	4916	11778	24,6	12	985	1,8			
0,1	1164	949	1504	39,2	12	132	3,1			
Tablica 42 Wyniki badania modułu zespolonego metodą TC mieszanki AC 16 P <u>50/70</u>

	Temperatura -10 °C							
	E1	E2	E	Kąt	3	ΔE	∆ Kąt	
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[0]	
0	39472	6467	40000	9,3	12	854	0,7	
0	43510	6210	43951	8,1	12	322	0,3	
0	47960	5652	48292	6,7	13	273	0,1	
0	52030	4686	52241	5,1	13	295	0,1	
0	56411	2206	56454	2,2	12	227	0,1	
0	59464	-1535	59485	-1,5	12	358	0,5	
0	38342	6565	38900	9,7	12	414	0,3	
			Tempera	tura 0 ⁰C	;			
	E1	E2	Е	Kąt	3	ΔE	∆ Kąt	
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[0]	
0	23827	6642	24737	15,6	12	1809	0,8	
0	28314	6734	29105	13,4	12	2307	0,8	
0	33632	6704	34295	11,3	12	2146	0,7	
0	38394	6307	38910	9,4	12	2205	0,7	
0	43910	4810	44176	6,3	12	2237	1,0	
0	47399	2399	47469	2,9	12	2008	1,6	
0	23674	6563	24568	15,5	12	2216	0,9	
			Temperat	tura 10 °C	2			
	E1	E2	E	Kąt	3	ΔE	∆ Kąt	
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[0]	
0,1	10405	4955	11528	25,6	12	1006	1,7	
0,3	15334	6204	16549	22,2	12	2216	2,0	
1,0	18871	6507	19964	19,1	8	1341	1,1	
3,0	23286	6740	24242	16,2	12	1061	0,5	
10,0	29014	6067	29642	11,8	12	1086	0,3	
20,0	32752	4657	33085	8,1	12	1205	1,1	
0,1	17726	4777	18556	19,4	11	12038	9,9	
			Temperat	tura 20 °C	2			
	E1	E2	Е	Kąt	3	ΔE	∆ Kąt	
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[0]	
0,1	2777	2075	3468	36,9	12	583	2,0	
0,3	3703	2775	4628	36,9	12	526	1,3	
1	6483	4091	7667	32,3	12	1169	1,0	
3	10819	5319	12077	27,0	12	3638	3,5	
10	14271	5847	15423	22,3	12	2049	0,7	
20	17581	5495	18420	17,4	12	2447	0,7	
0,1	2613	1961	3269	37,0	12	595	1,8	
			Temperat	tura 30 °C	2			
	E1	E2	E	Kąt	3	ΔE	∆ Kąt	
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[0]	
0,1	746	660	997	41,5	13	36	2,0	
0,3	1301	1187	1763	42,2	12	691	2,9	
1	1895	1770	2593	43,0	12	52	0,9	
3	3166	2732	4182	40,8	13	114	0,6	
10	5589	3961	6851	35,3	12	194	0,6	
20	7774	4471	8969	29,9	12	232	1,0	
0,1	692	598	915	40,9	12	35	1,7	

Tablica 43 Wyniki badania modułu zespolonego metodą TC mieszanki AC 16 W DE30B

			Temperate	ura -10 °0	C		
	E1	E2	E	Kąt	3	ΔΕ	∆ Kąt
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[0]
0,1	42599	5539	42959	7,4	12	1783	0,4
0,3	45864	4888	46124	6,1	12	1714	0,4
1	49267	4369	49461	5,1	12	1762	0,3
3	52164	3525	52284	3,9	12	1692	0,3
10	55368	2295	55450	2,3	12	1601	2,3
20	57041	-2102	57090	-2,1	11	581	1,3
0,1	40583	5604	40970	7,9	12	1067	0,7
			Tempera	tura 0 °C			
	E1	E2	Е	Kat	3	ΔE	∆ Kạt
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[0]
0,1	28449	5881	29053	11,7	12	1713	0.8
0,3	32565	5788	33077	10,1	12	1480	0,6
1	37012	5547	37427	8,5	12	1466	0,5
3	41973	4699	42239	6,4	12	688	0,9
10	45471	3592	45615	4,5	12	1421	0,6
20	48582	1560	48612	1,9	9	1298	1,0
0,1	28773	5860	29365	11,5	12	1554	0,6
			Temperat	ura 10 °C)		
	E1	E2	E	Kat	3	ΔΕ	∆ Kat
Hz	[MPa]	[MPa]	[MPa]	[0]	um/m	[MPa]	[0]
0.1	15240	5028	16049	18.3	12	910	0.6
0.3	18731	5399	19494	16.1	12	1073	0.6
1,0	22959	5659	23647	13,9	12	1244	0,6
3,0	27018	5561	27586	11,6	12	1371	0,6
10,0	31880	4575	32208	8,2	12	1450	0,6
20,0	34957	2834	35074	4,6	12	1411	0,8
0,1	15101	4953	15894	18,2	12	906	0,7
			Temperat	ura 20 °C)		
	E1	E2	E	Kat	3	ΔE	∆ Kat
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[0]
0,1	6180	3072	6902	26,4	12	712	0,3
0,3	8237	3776	9061	24,7	12	943	0,6
1	11130	4578	12036	22,4	12	1106	0,9
3	14484	5145	15372	19,6	12	1279	1,1
10	18960	5261	19680	15,6	12	1437	1,4
20	21994	4671	22492	12,1	12	1556	1,7
0,1	5915	2928	6600	26,3	12	688	0,4
			Temperat	ura 30 °C)		
	E1	E2	E	Kat	3	ΔΕ	∆ Kat
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[0]
0,1	2007	1323	2405	33,4	12	251	1,9
0,3	2831	1838	3377	33,0	12	349	1,8
1	4192	2612	4941	32,0	12	488	1,4
3	6099	3464	7016	29,7	12	628	1,3
10	9081	4268	10036	25,3	12	802	1,5
20	11353	4388	12176	21,2	12	859	1,9
0,1	1888	1217	2248	32,8	12	237	2,5

Tablica 44 Wyniki badania modułu zespolonego metodą TC mieszanki AC 16 W_35/50_____

	Temperatura -10 °C						
	E1	E2	E	Kąt	3	ΔΕ	∆ Kąt
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[0]
0,1	43384	6248	43831	8,2	12	3942	0,2
0,3	47417	5828	47774	7,0	12	4054	0,0
1	51341	5168	51600	5,8	12	4022	0,1
3	55071	4290	55238	4,5	12	4319	0,0
10	59128	1891	59158	1,8	11	4443	0,2
20	61967	-1239	61980	-1,2	5	3536	0,3
0,1	39918	5929	40356	8,4	12	3542	0,2
			Tempera	tura 0 °C			
	E1	E2	E	Kat	3	ΔE	∆ Kat
Hz	[MPa]	[MPa]	[MPa]	[0]	μm/m	[MPa]	[0]
0,1	29309	6928	30118	13,3	12	2565	0,6
0,3	34098	6776	34767	11,3	12	2312	0,7
1	39340	6559	39885	9,5	12	2552	0,5
3	43548	5827	43937	7,6	12	3163	0,3
10	48667	4160	48848	4,9	13	3469	0,8
20	51608	1964	51674	2,1	10	2885	2,2
0,1	28332	6801	29137	13,5	12	889	0,4
			Temperat	ura 10 °C)		
	E1	E2	E	Kat	3	ΔΕ	∆ Kat
Hz	[MPa]	[MPa]	[MPa]	[0]	um/m	[MPa]	[0]
0,1	11771	5027	12807	23,3	12	1310	2,4
0,3	15280	5618	16286	20,3	12	1183	1,8
1,0	19717	6090	20641	17,2	12	1126	1,4
3,0	24219	6142	24989	14,3	12	1104	1,1
10,0	29540	5255	30008	10,1	12	1058	1,1
20,0	33129	3429	33316	5,9	11	1191	1,6
0,1	12195	4949	13162	22,1	12	882	1,2
			Temperat	ura 20 °C	;		
	E1	E2	E	Kąt	3	ΔΕ	∆ Kąt
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[0]
0,1	4017	2706	4853	34,7	12	1310	4,1
0,3	5834	3585	6857	32,1	12	1418	3,5
1	8658	4639	9832	28,5	12	1449	2,8
3	12239	5509	13430	24,4	12	1584	2,2
10	17006	5886	18002	19,2	12	1642	1,7
20	20233	5371	20940	14,9	12	1607	1,6
0,1	3678	2531	4470	35,0	12	918	3,3
			Temperat	ura 30 °C	;		
	E1	E2	Е	Kąt	3	ΔE	∆ Kąt
Hz	[MPa]	[MPa]	[MPa]	[0]	μm/m	[MPa]	[0]
0,1	762	729	1058	45,2	12	376	6,0
0,3	1258	1188	1734	44,3	12	478	5,1
1	2219	1997	2989	42,6	11	617	4,0
3	3724	3023	4802	39,5	11	789	3,4
10	6347	4260	7650	34,2	11	1469	3,2
20	8590	4791	9838	29,3	12	1428	1,8
0,1	700	675	975	45,6	12	460	7,1

Tablica 45 Wyniki badania modułu zespolonego metodą TC mieszanki AC 16 W <u>50/70</u>

	Temperatura -10 °C							
	E1	E2	E	Kąt	3	ΔΕ	∆ Kąt	
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[0]	
0,1	33033	6508	33669	11,2	12	2441	0,7	
0,3	37548	6344	38083	9,6	13	2732	0,8	
1	41993	5914	42410	8,0	12	2880	0,7	
3	46081	5196	46374	6,5	12	2827	0,6	
10	50652	3175	50753	3,6	12	2785	0,6	
20	53816	505	53821	0,6	11	2567	0,8	
0,1	32050	6515	32708	11,5	12	3028	0,9	
			Temp	eratura	O°C			
	E1	E2	E	Kąt	3	ΔΕ	∆ Kąt	
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[0]	
0,1	21396	6393	22348	17,0	12	3850	2,6	
0,3	27445	6633	28242	13,7	12	3244	1,5	
1	31304	6637	32009	12,1	12	4178	1,6	
3	36990	6174	37514	9,7	12	5425	1,6	
10	42457	4650	42719	6,4	12	5256	1,3	
20	45929	2208	45992	2,8	11	5033	1,4	
0,1	21283	6350	22217	16,8	12	4083	2,0	
			Tempe	eratura 1	0 °C			
	E1	E2	E	Kąt	3	ΔΕ	∆ Kąt	
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[0]	
0,1	9373	4728	10499	26,8	12	1051	0,8	
0,3	12216	5514	13406	24,5	12	1914	1,6	
1,0	17298	6288	18407	20,0	12	1382	0,7	
3,0	21945	6734	22956	17,1	12	1677	0,6	
10,0	27685	6369	28410	12,9	12	2041	0,7	
20,0	30568	5644	31088	10,5	11	3028	1,0	
0,1	9194	4659	10307	26,9	12	915	0,6	
			Tempe	eratura 2	20 °C			
	E1	E2	Е	Kąt	3	ΔE	∆ Kąt	
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[0]	
0,1	2311	1791	2924	37,8	12	153	0,9	
0,3	3290	2507	4138	37,4	12	402	2,0	
1	5578	3697	6692	33,6	12	268	0,5	
3	8395	4776	9659	29,6	13	365	0,5	
10	12624	5580	13803	23,8	12	448	0,8	
20	15716	5472	16646	19,2	12	456	1,5	
0,1	2162	1664	2729	37,6	12	144	1,3	
			Tempe	eratura 3	30 °C			
	E1	E2	E	Kąt	3	ΔE	∆ Kąt	
Hz	[MPa]	[MPa]	[MPa]	[0]	µm/m	[MPa]	[0]	
0	640	537	836	40,2	12	110	1,7	
0	923	822	1237	41,9	12	153	3,3	
0	1539	1434	2105	43,1	12	134	2,5	
0	2560	2277	3428	41,7	12	129	1,9	
0	4553	3414	5692	36,9	12	133	1,4	
0	6373	3974	7513	31,9	12	143	1,7	
0	581	493	762	40,6	12	127	3,1	

8. Ocena porównawcza uzyskanych wyników w odniesieniu do metody empirycznej (Zadanie 7)

8.1. Wybór metody empirycznej

Metody empiryczne polegają na obliczeniu modułu sztywności na podstawie właściwości materiałów składowych i mieszanki mineralno-asfaltowej. Jedną z najbardziej znanych i powszechnie, również w Polsce, stosowaną jest metoda Shella oparta na nomogramie Van der Poela [8]. W metodzie tej sztywność mma obliczana jest w wybranej temperaturze i czasie (częstotliwości) obciążenia na podstawie właściwości asfaltu (penetracja i temperatura mięknienia) oraz właściwości fizycznych mma (zawartości objętościowej kruszywa i asfaltu). Metoda Shella została zastosowana na potrzeby realizowanej pracy.

8.2. Wyniki obliczeń

Na potrzeby niniejszej pracy wykorzystano program BANDS firmy Shell. Obliczenia przeprowadzono przyjmując właściwości asfaltu uzyskane w badaniach laboratoryjnych przed i po starzeniu RTFOT (tablica 46) oraz właściwości mieszanek wyznaczone na etapie projektowania recept. Przyjęte zostały następujące temperatury: 0, 10, 20 i 30°C oraz czasy (częstotliwości) obciążenia: 0,248 s (czas odpowiadający warunkom badania sztywności metodą ITT), 1 Hz, 3 Hz, 10 Hz i 20 Hz (wybrane częstotliwości badania metodą 4PB i TC). Wyniki obliczeń przedstawiono w tablicach 46-47).

		RODZAJ ASFALTU					
WŁAŚCIWOŚCI	20/30	35/50	50/70	MODBIT 30B			
Penetracja w 25°C, 0,1 mm	24	42	67	33			
Temperatura mięknienia PiK, °C	63,0	53,2	48	71,4			
ро	RTFOT						
Penetracja w 25°C, 0,1 mm	22	37	47	26			
Temperatura mięknienia PiK, °C	68	57	53,8	74,2			

Tablica 46 Podstawowe właściwości lepiszczy asfaltowych

(asiali dez starzenia), [WFa]									
	0,248s	1 Hz	3 Hz	5 Hz	10 Hz	20 Hz			
ACWMS 11 DE30B	8 980	9 940	11 600	12 300	13 300	14 400			
ACWMS 11 20/30	15 800	16 900	19 800	21 400	23 000	24 600			
ACWMS 16 DE30B	9 660	10 700	12 400	13 100	14 100	15 200			
ACWMS 16 20/30	16 700	17 800	20 800	22 400	24 000	25 500			
AC 16 P DE30B	8 700	9 530	11 000	11 700	12 700	13 700			
AC 16 P 35/50	15 600	16 200	20 000	21 300	23 100	25 100			
AC 16 P 50/70	12 700	14 100	17 200	18 600	20 800	23 000			
AC 22 P DE30B	9 620	10 500	12 100	12 800	13 800	14 900			
AC 22 P 35/50	16 500	17 700	20 900	22 300	24 200	26 200			
AC 22 P 50/70	13 200	14 600	17 700	19 200	21 300	23 600			
AC 16 W DE30B	8 990	9 880	11 500	12 200	13 200	14 200			
AC 16 W 35/50	14 800	15 900	19 000	20 400	22 200	24 200			
AC 16 W 50/70	11 900	13 300	16 300	17 700	19 800	22 100			
AC 22 W DE30B	10 100	11 100	12 800	13 500	14 600	15 700			
AC 22 W 35/50	16 700	17 900	21 100	22 500	24 400	26 400			
AC 22 W 50/70	13 700	15 100	18 300	19 800	22 000	24 200			

Tablica 47 Wyniki obliczenia sztywności w temperaturze 0°C (asfalt bez starzenia), [MPa]

Tablica 48 Wyniki obliczenia sztywności w temperaturze 0°C (asfalt po RTFOT). [MPa]

	0,248s	1 Hz	3 Hz	5 Hz	10 Hz	20 Hz			
ACWMS 11 DE30B	11 100	11 700	13 200	14 000	15 100	16 400			
ACWMS 11 20/30	14 600	15 500	17 600	18 700	20 200	21 800			
ACWMS 16 DE30B	11 900	12 400	14 000	14 900	16 000	17 300			
ACWMS 16 20/30	15 500	16 400	18 500	19 600	21 100	22 800			
AC 16 P DE30B	10 600	11 100	12 600	13 400	14 500	15 700			
AC 16 P 35/50	14 200	15 200	17 700	19 000	20 800	22 800			
AC 16 P 50/70	13 400	14 400	17 000	18 100	19 900	21 700			
AC 22 P DE30B	11 600	12 200	13 800	14 600	15 700	16 900			
AC 22 P 35/50	15 100	16 100	18 700	19 900	21 800	23 800			
AC 22 P 50/70	14 300	15 300	18 100	19 300	21 100	23 000			
AC 16 W DE30B	11 000	11 600	13 100	13 900	15 000	16 200			
AC 16 W 35/50	13 400	14 400	16 800	18 100	19 900	21 800			
AC 16 W 50/70	10 300	11 100	13 200	14 200	15 700	17 300			
AC 22 W DE30B	12 300	12 900	14 500	15 300	16 500	17 800			
AC 22 W 35/50	15 300	16 300	18 800	20 100	22 000	24 000			
AC 22 W 50/70	14 400	15 400	18 100	19 300	21 000	22 900			

(dstalt bez statzerila), [WFa]								
	0,248s	1 Hz	3 Hz	5 Hz	10 Hz	20 Hz		
ACWMS 11 DE30B	4 390	4 920	6 510	7 320	8 570	10 000		
ACWMS 11 20/30	9 300	10 500	12 500	13 500	15 000	16 600		
ACWMS 16 DE30B	4 820	5 380	7 070	7 920	9 230	10 800		
ACWMS 16 20/30	9 990	11 300	13 300	14 300	15 900	17 500		
AC 16 P DE30B	4 570	5 070	6 520	7 240	8 350	9 620		
AC 16 P 35/50	7 600	8 630	11 800	13 300	15 000	16 700		
AC 16 P 50/70	5 240	6 150	8 770	10 100	12 100	14 200		
AC 22 P DE30B	5 130	5 670	7 250	8 040	9 230	10 600		
AC 22 P 35/50	8 250	9 320	12 600	14 100	15 900	17 700		
AC 22 P 50/70	5 540	6 480	9 170	10 600	12 600	14 700		
AC 16 W DE30B	4 600	5 120	6 660	7 430	8 610	9 980		
AC 16 W 35/50	6 990	7 980	11 100	12 500	14 100	15 900		
AC 16 W 50/70	4 750	5 610	8 120	9 440	11 300	13 400		
AC 22 W DE30B	5 270	5 850	7 560	8 410	9 720	11 200		
AC 22 W 35/50	8 180	9 300	12 700	14 200	16 000	17 800		
AC 22 W 50/70	5 610	6 600	9 460	11 000	13 100	15 200		

Tablica 49 Wyniki obliczenia sztywności w temperaturze 10°C (asfalt bez starzenia), [MPa]

Tablica 50 Wyniki obliczenia sztywności w temperaturze 10°C (asfalt po RTFOT). [MPa]

	0,248s	1 Hz	3 Hz	5 Hz	10 Hz	20 Hz			
ACWMS 11 DE30B	5 780	6 460	8 340	9 350	10 800	11 700			
ACWMS 11 20/30	8 440	9 420	11 700	12 700	13 300	15 200			
ACWMS 16 DE30B	6 290	7 010	8 980	10 000	11 600	12 500			
ACWMS 16 20/30	9 090	10 100	12 500	13 500	14 700	16 100			
AC 16 P DE30B	5 850	6 470	8 140	9 030	10 300	11 200			
AC 16 P 35/50	7 380	8 470	11 300	12 300	13 700	15 300			
AC 16 P 50/70	6 310	7 190	10 000	11 500	12 900	14 500			
AC 22 P DE30B	6 530	7 200	9 010	9 970	11 400	12 200			
AC 22 P 35/50	8 020	9 160	12 100	13 200	14 600	16 200			
AC 22 P 50/70	6 840	7 770	10 800	12 300	13 800	15 400			
AC 16 W DE30B	5 950	6 600	8 380	9 340	10 700	11 600			
AC 16 W 35/50	6 790	7 830	10 500	11 600	12 900	14 400			
AC 16 W 50/70	4 790	5 510	7 420	8 470	9 980	11 300			
AC 22 W DE30B	6 770	7 500	9 470	10 500	12 000	13 000			
AC 22 W 35/50	7 940	9 130	12 200	13 300	14 700	16 300			
AC 22 W 50/70	6 770	7 730	10 800	12 400	13 900	15 500			

(asiali bez siarzenia), [wifa]								
	0,248s	1 Hz	3 Hz	5 Hz	10 Hz	20 Hz		
ACWMS 11 DE30B	2 040	2 320	3 2 3 0	3 720	4 450	5 310		
ACWMS 11 20/30	3 870	4 490	6 460	7 490	9 100	10 800		
ACWMS 16 DE30B	2 280	2 590	3 580	4 100	4 870	5 790		
ACWMS 16 20/30	4 260	4 920	7 010	8 100	9 780	11 600		
AC 16 P DE30B	2 290	2 580	3 470	3 940	4 630	5 420		
AC 16 P 35/50	2 560	3 140	4 840	5 830	7 300	8 900		
AC 16 P 50/70	-	1 800	3 040	3 850	5 060	6 500		
AC 22 P DE30B	2 610	2 930	3 920	4 4 3 0	5 180	6 060		
AC 22 P 35/50	2 890	3 510	5 330	6 380	7 930	9 600		
AC 22 P 50/70	-	1 950	3 260	4 0 9 0	5 350	6 830		
AC 16 W DE30B	2 240	2 530	3 460	3 940	4 660	5 500		
AC 16 W 35/50	2 260	2 790	4 370	5 310	6 710	8 240		
AC 16 W 50/70	-	1 560	2 700	3 440	4 580	5 940		
AC 22 W DE30B	2 610	2 940	3 980	4 530	53 300	6 270		
AC 22 W 35/50	2 720	3 340	5 180	6 250	7 850	9 600		
AC 22 W 50/70	-	1 900	3 2 4 0	4 100	5 420	6 980		

Tablica 51 Wyniki obliczenia sztywności w temperaturze 20°C (asfalt bez starzenia), [MPa]

Tablica 52 Wyniki obliczenia sztywności w temperaturze	20°C
(asfalt po RTFOT), [MPa]	

	ιαδιαπ μ		<i>J</i> i <i>J</i> , Livi	נמו		
	0,248s	1 Hz	3 Hz	5 Hz	10 Hz	20 Hz
ACWMS 11 DE30B	2 710	3 080	4 190	4 790	5 710	6 800
ACWMS 11 20/30	3 830	4 450	6 0 3 0	6 920	8 270	9 820
ACWMS 16 DE30B	3 010	3 410	4 600	5 240	6 220	7 370
ACWMS 16 20/30	4 210	4 880	6 550	7 490	8 910	10 500
AC 16 P DE30B	2 960	3 320	4 390	4 940	5 790	6 890
AC 16 P 35/50	2 890	3 4 3 0	5 090	5 920	7 270	8 960
AC 16 P 50/70	2 230	2 700	4 120	4 980	6 200	7 590
AC 22 P DE30B	3 350	3 750	4 920	5 530	6 460	7 530
AC 22 P 35/50	3 240	3 830	5 600	6 480	7 900	9 660
AC 22 P 50/70	2 410	2 920	4 450	5 350	6 680	8 140
AC 16 W DE30B	2 930	3 300	4 4 1 0	4 990	5 890	6 930
AC 16 W 35/50	2 560	3 060	4 610	5 390	6 680	8 300
AC 16 W 50/70	1 840	2 200	3 330	3 920	4 870	6 020
AC 22 W DE30B	3 390	3 810	5 050	5 700	6 700	7 860
AC 22 W 35/50	3 070	3 660	5 450	6 350	7 810	9 660
AC 22 W 50/70	2 360	2 870	4 400	5 3 3 0	6 650	8 160

(asiait bez stalzellia), [WF a]										
	0,248s	1 Hz	3 Hz	5 Hz	10 Hz	20 Hz				
ACWMS 11 DE30B	-	-	1 550	1 800	2 210	2 720				
ACWMS 11 20/30	-	1 500	2 420	2 990	3 900	4 910				
ACWMS 16 DE30B	-	I	1 750	2 020	2 470	3 020				
ACWMS 16 20/30	-	1 690	2 700	3 310	4 290	5 370				
AC 16 P DE30B	-	I	1 790	2 050	2 470	2 970				
AC 16 P 35/50	-	I	-	1 940	2 690	3 690				
AC 16 P 50/70	-	I	-	-	-	2 270				
AC 22 P DE30B	-	I	2 050	2 340	2 810	3 360				
AC 22 P 35/50	-	-	-	2 210	3 0 3 0	4 100				
AC 22 P 50/70	-	-	-	-	-	2 440				
AC 16 W DE30B	-	-	1 730	2 000	2 420	2 940				
AC 16 W 35/50	-	-	-	1 690	2 380	3 290				
AC 16 W 50/70	-	-	-	-	-	1 990				
AC 22 W DE30B	-	I	2 030	2 330	2 820	3 400				
AC 22 W 35/50	-	-	-	2 0 5 0	2 860	3 9 3 0				
AC 22 W 50/70	-	-	-	-	-	2 400				

Tablica 53 Wyniki obliczenia sztywności w temperaturze 30°C (asfalt bez starzenia), [MPa]

Tablica 54 Wyniki obliczenia sztywności w temperaturze	30°C
(asfalt po RTFOT), [MPa]	

	0,248s	1 Hz	3 Hz	5 Hz	10 Hz	20 Hz				
ACWMS 11 DE30B	-	1 440	2 000	2 340	2 870	3 530				
ACWMS 11 20/30	1 460	1 750	2 630	3 140	3 990	4 920				
ACWMS 16 DE30B	-	1 630	2 240	2 610	3 180	3 890				
ACWMS 16 20/30	1 650	1 970	2 930	3 480	4 390	5 380				
AC 16 P DE30B	-	1 680	2 260	2 590	3 120	3 760				
AC 16 P 35/50	-	-	1 810	2 260	2 980	3 870				
AC 16 P 50/70	-	-	-	-	2 390	3 200				
AC 22 P DE30B	-	1 920	2 570	2 940	3 530	4 230				
AC 22 P 35/50	-	-	2 060	2 560	3 340	4 310				
AC 22 P 50/70	-	-	-	-	2 580	3 470				
AC 16 W DE30B	-	1 620	2 210	2 550	3 090	3 750				
AC 16 W 35/50	-	-	1 570	5 980	2 640	3 470				
AC 16 W 50/70	-	-	-	-	1 980	2 600				
AC 22 W DE30B	-	1 900	2 570	2 960	3 570	4 320				
AC 22 W 35/50	-	-	1 910	2 390	3 1 7 0	4 1 3 0				
AC 22 W 50/70	-	-	-	-	2 530	3 400				

8.3. Analiza porównawcza wyników badań uzyskanych różnymi metodami

8.3.1. Porównanie wyników badań metodą ITT i TC

Wyniki porównania pomiędzy metodą rozciągania pośredniego ITT a metodą ściskaniarozciągania TC w temperaturze 10, 20 i 30°C z podziałem na częstotliwość badania przedstawiono na rysunkach 8-13. Analiza porównawcza przy różnych częstotliwościach badania TC miała posłużyć znalezieniu częstotliwości, przy której istnieje najlepsza korelacja (najwyższy współczynnik determinacji regresji). Na podstawie wszystkich przedstawionych na rysunkach porównań można stwierdzić ogólnie, że najczęściej najlepszą korelację uzyskuje się przy częstotliwości badania 1Hz. Przy tej częstotliwości w zależności od wyboru temperatury oraz ewentualnego podziału na mieszanki z asfaltami drogowymi i polimeroasfaltem współczynnik R² zmienia się od 0,78 do 0,98.

Współczynnik proporcjonalności między wynikami ITT a TC zmienia się w zależności od temperatury od 0,73 do 0,93 (przy częstotliwości 1Hz).

Analizując wyniki przedstawione na rysunkach 11-13 uwzględniające wyniki ze wszystkich temperatur razem oraz z podziałem na mieszanki z asfaltami drogowymi i polimeroasfaltem należy zwrócić uwagę na wysokie wartości współczynnika R² (powyżej 0,9 za wyjątkiem częstotliwości 0,1Hz). Można również zauważyć, że podział na mieszanki ze względu na typ asfaltu (drogowy/modyfikowany) praktycznie nie wpływa na współczynnik determinacji regresji, który jest bardzo wysoki (około 0,97 przy częstotliwości 1 Hz). Również współczynnik proporcjonalności wynoszący kolejno 0,76 (wszystkie mma), 0,77 (mma z asfaltami drogowymi) oraz 0,73 (mma z polimeroasfaltem) pomiędzy wynikami ITT a TC nie wskazuje na konieczność podziału na mieszanki ze względu na typ asfaltu.

Rysunek 8 Porównanie wyników badania sztywności metodą ITT i TC w temperaturze 10°C

Rysunek 9 Porównanie wyników badania sztywności metodą ITT i TC w temperaturze 20°C

Rysunek 10 Porównanie wyników badania sztywności metodą ITT i TC w temperaturze 30°C

Rysunek 11 Porównanie wyników badania sztywności metodą ITT i TC w temperaturze 10, 20 i 30°C (wszystkie mma)

Rysunek 12 Porównanie wyników badania sztywności metodą ITT i TC w temperaturze 10, 20 i 30°C (mma z asfaltami zwykłymi)

Rysunek 13 Porównanie wyników badania sztywności metodą ITT i TC w temperaturze 10, 20 i 30°C (mma z polimeroasfaltem)

8.3.2. Porównanie wyników badań metodą ITT i 4PB

Wyniki porównania pomiędzy metodą rozciągania pośredniego ITT a metodą belki czteropunktowo-zginanej w temperaturze 10, 20 i 30°C z podziałem na częstotliwość badania przedstawiono na rysunkach 14-19. Analiza porównawcza przy różnych częstotliwościach badania 4PB miała posłużyć znalezieniu częstotliwości, przy której istnieje najlepsza korelacja (najwyższy współczynnik determinacji regresji). Na podstawie wszystkich przedstawionych na rysunkach porównań można stwierdzić ogólnie, że współczynnik determinacji jest na porównywalnym poziomie niezależnie od częstotliwości. Ogólnie można zauważyć, że wartość R^2 wzrasta wraz z temperaturą badania.

Współczynnik proporcjonalności wyraźnie zależy od częstotliwości badania, a przy danej częstotliwości w minimalnym stopniu zależy od temperatury (częstotliwość 5-30Hz). Przykładowo temperaturze 10°C współczynnik proporcjonalności zmienia się od wartości 2,55 (0,2 Hz) do 0,9 (30 Hz).

Analizując wyniki przedstawione na rysunkach 17-19 uwzględniające wyniki ze wszystkich temperatur razem oraz z podziałem na mieszanki z asfaltami drogowymi i polimeroasfaltem należy zwrócić uwagę na wysokie wartości współczynnika R² (od 0,75 do 0,88). Można również zauważyć, że podział na mieszanki ze względu na typ asfaltu (drogowy/modyfikowany) wpływa nieznacznie na współczynnik determinacji regresji. Współczynnik proporcjonalności wynoszący przykładowo przy częstotliwości 10 Hz kolejno 1,27 (wszystkie mma), 1,25 (mma z asfaltami drogowymi) oraz 1,31 (mma z polimeroasfaltem) pomiędzy wynikami ITT a 4PB nie wskazuje na konieczność podziału na mieszanki ze względu na typ asfaltu.

Rysunek 14 Porównanie wyników ITT i 4PB w temperaturze 10°C

Rysunek 15 Porównanie wyników ITT i 4PB w temperaturze 20°C

Rysunek 16 Porównanie wyników ITT i 4PB w temperaturze 30°C

Rysunek 17 Porównanie wyników ITT i 4PB w temperaturze 10, 20 i 30°C (wszystkie mieszanki)

Rysunek 18 Porównanie wyników ITT i 4PB w temperaturze 10, 20 i 30°C (mma z asfaltami drogowymi)

Rysunek 19 Porównanie wyników ITT i 4PB w temperaturze 10, 20 i 30°C (mma z polimeroasfaltem)

8.3.3. Porównanie wyników badań metodą TC i 4PB

Wyniki porównania pomiędzy metodą ściskania-rozciągania TC a metodą belki czteropunktowo-zginanej w temperaturze -10, 0, 10, 20 i 30°C z podziałem na częstotliwość badania przedstawiono na rysunkach 25-27.

Wartość współczynnika determinacji regresji wzrasta wraz z temperaturą badania. W temperaturze -10 i 0°C jest na poziomie bardzo niskim (od 0,03 do 0,3) natomiast w wyższych temperaturach osiąga wartość 0,5-0,7. Niezależnie jednak od temperatury badania i częstotliwości współczynnik proporcjonalności pomiędzy wynikami metodą 4PB a TC zmienia się w niewielkim zakresie (około 0,4-0,45). Efektem tego jest uzyskanie bardzo wysokich wartości R² przy analizie regresji wyników ze wszystkich temperatur razem (od 0,94 do 0,98).

Można również zauważyć, że podział na mieszanki ze względu na typ asfaltu (drogowy/modyfikowany) wpływa nieznacznie na współczynnik determinacji regresji. Współczynnik proporcjonalności wynoszący przykładowo przy częstotliwości 10 Hz kolejno 0,44 (wszystkie mma), 0,43 (mma z asfaltami drogowymi) oraz 0,46 (mma z polimeroasfaltem) pomiędzy wynikami 4PB a TC nie wskazuje na konieczność podziału na mieszanki ze względu na typ asfaltu.

Rysunek 20 Porównanie wyników badań metodą TC i 4PB w temperaturze -10°C przy różnych częstotliwościach obciążenia (wszystkie mieszanki)

Rysunek 21 Porównanie wyników badań metodą TC i 4PB w temperaturze 0°C przy różnych częstotliwościach obciążenia (wszystkie mieszanki)

Rysunek 22 Porównanie wyników badań metodą TC i 4PB w temperaturze 10°C przy różnych częstotliwościach obciążenia (wszystkie mieszanki)

Rysunek 23 Porównanie wyników badań metodą TC i 4PB w temperaturze 20°C przy różnych częstotliwościach obciążenia (wszystkie mieszanki)

Rysunek 24 Porównanie wyników badań metodą TC i 4PB w temperaturze 30°C przy różnych częstotliwościach obciążenia (wszystkie mieszanki)

Rysunek 25 Porównanie wyników badań metodą TC i 4PB w temperaturze -10, 0, 10, 20 i 30°C przy różnych częstotliwościach obciążenia (wszystkie mieszanki)

Rysunek 27 Porównanie wyników badań metodą TC i 4PB w temperaturze -10, 0, 10, 20 i 30°C przy różnych częstotliwościach obciążenia (mma z polimeroasfaltem)

8.4. Porównanie wyników badań z wynikami obliczeń empirycznych

8.4.1. Metoda rozciągania pośredniego ITT

Na rysunkach 28-36 przedstawiono porównanie wyników badania metodą ITT.

Rysunek 28 Porównanie wyników badań w temperaturze 10°C metodą ITT z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – wszystkie mieszanki

Rysunek 29 Porównanie wyników badań w temperaturze 10°C metodą ITT z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – mieszanki z asfaltami zwykłymi

Rysunek 30 Porównanie wyników badań w temperaturze 10°C metodą ITT z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – mieszanki z asfaltami modyfikowanymi

Rysunek 31 Porównanie wyników badań w temperaturze 20°C metodą ITT z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – wszystkie mieszanki

Rysunek 32 Porównanie wyników badań w temperaturze 20°C metodą ITT z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – mieszanki z asfaltami zwykłymi

Rysunek 33 Porównanie wyników badań w temperaturze 20°C metodą ITT z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – mieszanki z asfaltami modyfikowanymi

Rysunek 34 Porównanie wyników badań w temperaturze 10 i 20°C metodą ITT z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – wszystkie mieszanki

Rysunek 35 Porównanie wyników badań w temperaturze 10 i 20°C metodą ITT z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – mieszanki z asfaltami zwykłymi

Rysunek 36 Porównanie wyników badań w temperaturze 10 i 20°C metodą ITT z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – mieszanki z asfaltami modyfikowanymi

8.4.2. Metoda ściskania-rozciągania TC

Na rysunkach 37-51 przedstawiono porównanie wyników badania metodą TC.

Rysunek 37 Porównanie wyników badań w temperaturze 0°C metodą TC z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – wszystkie mieszanki

Rysunek 38 Porównanie wyników badań w temperaturze 0°C metodą TC z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – mieszanki z asfaltami zwykłymi

Rysunek 39 Porównanie wyników badań w temperaturze 0°C metodą TC z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – mieszanki z asfaltami modyfikowanymi

Rysunek 40 Porównanie wyników badań w temperaturze 10°C metodą TC z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – wszystkie mieszanki

Rysunek 41 Porównanie wyników badań w temperaturze 10°C metodą TC z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – mieszanki z asfaltami zwykłymi

Rysunek 42 Porównanie wyników badań w temperaturze 10°C metodą TC z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – mieszanki z asfaltami modyfikowanymi

Rysunek 43 Porównanie wyników badań w temperaturze 20°C metodą TC z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – wszystkie mieszanki

Rysunek 44 Porównanie wyników badań w temperaturze 20°C metodą TC z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – mieszanki z asfaltami zwykłymi

Rysunek 45 Porównanie wyników badań w temperaturze 20°C metodą TC z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – mieszanki z asfaltami modyfikowanymi

Rysunek 46 Porównanie wyników badań w temperaturze 30°C metodą TC z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – wszystkie mieszanki

Rysunek 47 Porównanie wyników badań w temperaturze 30°C metodą TC z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – mieszanki z asfaltami zwykłymi

Rysunek 48 Porównanie wyników badań w temperaturze 30°C metodą TC z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – mieszanki z asfaltami modyfikowanymi

Rysunek 49 Porównanie wyników badań w temperaturze 0-30°C metodą TC z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – wszystkie mieszanki

Rysunek 50 Porównanie wyników badań w temperaturze 0-30°C metodą TC z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – mieszanki z asfaltami zwykłymi

Rysunek 51 Porównanie wyników badań w temperaturze 0-30°C metodą TC z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – mieszanki z asfaltami modyfikowanymi

Rysunek 52 Porównanie wyników badań w temperaturze 0-30°C i częstotliwości 10 Hz metodą TC z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – wszystkie mieszanki

Rysunek 53 Porównanie wyników badań w temperaturze 0-30°C i częstotliwości 10 Hz metodą TC z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – mieszanki z asfaltami zwykłymi

Rysunek 54 Porównanie wyników badań w temperaturze 0-30°C i częstotliwości 10 Hz metodą TC z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – mieszanki z asfaltami modyfikowanymi

8.4.3. Metoda belki czteropunktowo zginanej 4PB

Na rysunkach 55-75 przedstawiono porównanie wyników badania metodą 4PB.

Rysunek 55 Porównanie wyników badań w temperaturze 0°C metodą 4PB z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – wszystkie mieszanki

Rysunek 56 Porównanie wyników badań w temperaturze 0°C metodą 4PB z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – mieszanki z asfaltami zwykłymi

Rysunek 57 Porównanie wyników badań w temperaturze 0°C metodą 4PB z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – mieszanki z asfaltami modyfikowanymi

Rysunek 58 Porównanie wyników badań w temperaturze 10°C metodą 4PB z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – wszystkie mieszanki

Rysunek 59 Porównanie wyników badań w temperaturze 10°C metodą 4PB z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – mieszanki z asfaltami zwykłymi

Rysunek 60 Porównanie wyników badań w temperaturze 10°C metodą 4PB z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – mieszanki z asfaltami modyfikowanymi

Rysunek 61 Porównanie wyników badań w temperaturze 20°C metodą 4PB z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – wszystkie mieszanki

Rysunek 62 Porównanie wyników badań w temperaturze 20°C metodą 4PB z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – mieszanki z asfaltami zwykłymi

Rysunek 63 Porównanie wyników badań w temperaturze 20°C metodą 4PB z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – mieszanki z asfaltami modyfikowanymi

Rysunek 64 Porównanie wyników badań w temperaturze 30°C metodą 4PB z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – wszystkie mieszanki

Rysunek 65 Porównanie wyników badań w temperaturze 30°C metodą 4PB z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – mieszanki z asfaltami zwykłymi

Rysunek 66 Porównanie wyników badań w temperaturze 30°C metodą 4PB z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – mieszanki z asfaltami modyfikowanymi

Rysunek 67 Porównanie wyników badań w temperaturze 0-30°C metodą 4PB z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – wszystkie mieszanki

Rysunek 68 Porównanie wyników badań w temperaturze 0-30°C metodą 4PB z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – mieszanki z asfaltami zwykłymi

Rysunek 69 Porównanie wyników badań w temperaturze 0-30°C metodą 4PB z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – mieszanki z asfaltami modyfikowanymi

Rysunek 70 Porównanie wyników badań w temperaturze 0-30°C i częstotliwości 1 Hz metodą 4PB z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – wszystkie mieszanki

Rysunek 71 Porównanie wyników badań w temperaturze 0-30°C i częstotliwości 1 Hz metodą 4PB z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – mieszanki z asfaltami zwykłymi

Rysunek 72 Porównanie wyników badań w temperaturze 0-30°C i częstotliwości 1 Hz metodą 4PB z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – mieszanki z asfaltami modyfikowanymi

Rysunek 73 Porównanie wyników badań w temperaturze 0-30°C i częstotliwości 10 Hz metodą 4PB z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – wszystkie mieszanki

Rysunek 74 Porównanie wyników badań w temperaturze 0-30°C i częstotliwości 10 Hz metodą 4PB z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – mieszanki z asfaltami zwykłymi

Rysunek 75 Porównanie wyników badań w temperaturze 0-30°C i częstotliwości 10 Hz metodą 4PB z wynikami obliczeń (właściwości asfaltu przed i po starzeniu RTFOT) – mieszanki z asfaltami modyfikowanymi

8.4.4. Analiza porównawcza wyników badań i obliczeń empirycznych

W zakresie metody rozciągania pośredniego ITT porównanie z metodą empiryczną objęło wyniki w temperaturze 10 i 20°C. Równania regresyjne przedstawione na rysunkach wskazują na brak korelacji pomiędzy badaniem ITT a obliczeniami w temperaturze 10°C. Dopiero podział na mieszanki z asfaltami drogowymi (zwykłymi) i z asfaltem modyfikowanym w znacznym stopniu prowadzi do uzyskania lepszej korelacji. Współczynnik determinacji R² w przypadku mieszanek z asfaltem drogowym jest większy niż w przypadku mma z polimeroasfaltem. Można przyjąć, że w temperaturze 10°C moduł z badania ITT mieszanki z asfaltem zwykłym jest 2,4 razy większy niż moduł obliczony. W temperaturze 20°C współczynnik ten jest wiekszy i wynosi 3,1 uwzględniając wyniki asfaltu po starzeniu. Moduł sztywności mieszanek z polimeroasfaltem uzyskany w laboratorium jest 3,5-4,5 razy wyższy niż moduł obliczony metodą empiryczną. Ogólnie można zauważyć, że współczynniki determinacji w 20°C są w każdym przypadku wyższe niż w 10°C. Podobnie lepszą korelację uzyskuje się porównując wyniki badań z obliczeniami uwzględniającymi starzenie technologiczne asfaltu. Równania regresyjne uwzględniające wyniki z obydwu temperatur charakteryzują się współczynnikami determinacji na poziomie od 0,73 do 0,93. Współczynnik proporcjonalności między wynikami badania ITT a obliczeniami wynosi od 2,7 (mieszanki z asfaltami zwykłymi), 3 (wszystkie mieszanki) i 3,5-4,5 (mieszanki z polimeroasfaltem).

W zakresie metody ściskania-rozciągania TC porównanie z metodą empiryczną objęło wyniki w temperaturze 0, 10, 20 i 30°C. Analiza wyników mieszanek ze wszystkimi asfaltami razem wskazuje na bardzo niskie współczynnik determinacji regresji w temperaturze 0°C, który wzrasta wraz z temperaturą. Znaczną poprawę tego współczynnika można zauważyć też, w przypadku uwzględnienia właściwości asfaltu po starzeniu, np. w temperaturze 20°C wzrost z 0,18 do 0,74, a w temperaturze 30°C z 0,45 do 0,93. Po rozdziale zbioru wyników na mieszanki z asfaltem drogowym i modyfikowanym współczynniki R² znacząco poprawiają się i wynoszą od 0,72 do 0,97 (asfalty drogowe) i od 0.52 do 0.98 (asfalty modyfikowane). Najwyższe współczynniki korelacji (powyżej 0,85) uzyskano w temperaturze 20 i 30°C przyjmując w obliczeniach właściwości asfaltu po starzeniu technologicznym. Analizując równania regresyjne można zauważyć, że współczynnik proporcjonalności między wynikami obliczeń i badań metodą TC wzrasta wraz z temperatura. W temperaturze 0°C wynosi 2,2-2,4 (mma z asfaltami drogowymi) i 3-3,5 (mma z polimeroasfaltami), natomiast w temperaturze 30°C osiąga odpowiednio wartości 3-3,2 i 3,4-4,4. Na uwagę zasługują wysokie współczynniki R² regresji uwzględniających wyniki we wszystkich temperaturach razem. Wyniosły one od 0,91 do 0,97. Wyjątek stanowi regresja wyników badań i obliczeń sztywności mma ze wszystkimi asfaltami razem bez starzenia, który wyniósł 0,71. Uwzględnienie starzenia asfaltów zwiększa wartość R² w tym przypadku do 0,92. Współczynnik proporcjonalności pomiędzy wynikami badań metodą TC a obliczeniami wynosi 2,3-2,5 (mma z asfaltami drogowymi) i 3,1-3,7 (mma z polimeroasfaltami).

W zakresie <u>metody belki czteropunktowo-zginanej 4PB</u> porównanie z metodą empiryczną objęło wyniki w temperaturze 0, 10, 20 i 30°C. Analiza regresji w temperaturze 0°C wskazuje na małą korelację między wynikami badań a wynikami obliczeń nawet przy

rozdziale mieszanek W zależności od typu asfaltu (drogowy/modyfikowany). Współczynniki proporcjonalności są bliskie wartości 1. Wraz ze wzrostem temperatury współczynniki R² rosną. W temperaturze 10°C współczynnik ten wynosi około 0,5 po rozdziale mieszanek pod względem asfaltu. Warto zauważyć, że współczynnik proporcjonalności mieszanek z asfaltami drogowymi wynosi około 1,0 natomiast mieszanek z polimeroasfaltami około 1,5 (większe są moduły sztywności z badania 4PB). W temperaturze 20 i 30°C współczynniki proporcjonalności utrzymują się na tych samych poziomach. Na uwagę zasługują wysokie współczynniki R² regresji uwzględniających wyniki we wszystkich temperaturach razem, które wyniosły od 0,65 do 0,93. Obliczenia te wskazują, że wyniki badań mma z asfaltami drogowymi są prawie równe wynikom obliczeń empirycznych, natomiast w przypadku mma z polimeroasfaltem są około 1,5 razy większe. Warto również zauważyć, że wysokie współczynniki determinacji regresji uzyskano analizując wyniki ze wszystkich temperatur, ale z podziałem na różne częstotliwości. Współczynniki proporcjonalności są na podobnym poziomie jak w poprzednich analizach (tj. ~1,0-1,5).

9. Podsumowanie

Celem niniejszej pracy było określenie zależności pomiędzy wybranymi metodami badań sztywności uwzględnionymi we wdrażanych normach europejskich na mieszanki mineralno-asfaltowe oraz między tymi metodami a obliczeniami metodą empiryczną. Zgodnie z założeniami i programem badań zaprojektowano 16 typowych mieszanek betonu asfaltowego przewidzianych do stosowania w Polsce z różnymi asfaltami (drogowe i modyfikowane polimerem). Następnie przeprowadzono badania laboratoryjne metodą rozciągania pośredniego (ITT), belki czteropunktowo zginanej (4PB) i ściskania-rozciągania (TC) w szerokim zakresie temperatury i częstotliwości obciążenia oraz obliczono moduły sztywności poszczególnych mieszanek mineralno-asfaltowych z zastosowaniem metody Shell (program BANDS). Uzyskane wyniki poddano analizie porównawczej, której rezultaty pozwalają na określenie współczynników przeliczeniowych pomiędzy metodami badań (tablica 55) oraz pomiędzy wynikami badań a wynikami obliczeń empirycznych (tablica 56-57).

Wyniki pracy stanowią bardzo bogaty materiał, który może być wykorzystywany przez projektantów przy określaniu założeń do projektowania i wymagań wobec mma, w pracach badawczych oraz przy ustalaniu wymagań technicznych.

Tablica 55 Współczynniki przeliczeniowe pomiędzy metodami badania sztywności

Porównywane metody	Temperatura	Częstotliwość	Współczynnik przeliczeniowy
ITT i TC	dowolna	1 Hz	$E_{\rm ITT}/E_{\rm TC} = 0,75$
ITT i TC	dowolna	10 Hz	$E_{ITT}/E_{TC}=0,50$
ITT i 4PB	dowolna	1 Hz	$E_{ITT}/E_{4PB} = 1,9$
ITT i 4PB	dowolna	10 Hz	$E_{ITT}/E_{4pb} = 1,25$
4PB i TC	dowolna	dowolna	$E_{4PB}/E_{TC} = 0,45$

Tablica 56 Współczynniki przeliczeniowe pomiędzy metodami badania sztywności a metodą empiryczną (właściwości asfaltu przed starzeniem)

Metoda	Temperatura	Częstotliwość/ czas obciążenia	Współczynnik przeliczeniowy	Asfalt
ITT	10-20°C	0,248s	$E_{ITT}/E_{OBL} = 2,7$	drogowy
ITT	10-20°C	0,248s	$E_{ITT}/E_{OBL} = 4,5$	modyfikowany
тс	0-30°C	0,1-20 Hz	$E_{TC}/E_{OBL} = 2,2$	drogowy
тс	0-30°C	0,1-20 Hz	$E_{TC}/E_{OBL} = 3,6$	modyfikowany
4PB	0-30°C	0,1-20 Hz	$E_{4PB}/E_{OBL}=1,0$	drogowy
4PB	0-30°C	0,1-20 Hz	$E_{4PB}/E_{OBL}=1,6$	modyfikowany

Tablica 57 Współczynniki przeliczeniowe pomiędzy metodami badania sztywności a metodą empiryczną (właściwości asfaltu po RTFOT)

Metoda	Temperatura	Częstotliwość/ czas obciążenia	Współczynnik przeliczeniowy	Asfalt
ITT	10-20°C	0,248s	$E_{ITT}/E_{OBL} = 2,75$	drogowy
ITT	10-20°C	0,248s	$E_{ITT}/E_{OBL} = 3,6$	modyfikowany
тс	0-30°C	0,1-20 Hz	$E_{TC}/E_{OBL} = 2,5$	drogowy
тс	0-30°C	0,1-20 Hz	$E_{TC}/E_{OBL} = 3,1$	modyfikowany
4PB	0-30°C	0,1-20 Hz	$E_{4PB}/E_{OBL}=1,0$	drogowy
4PB	0-30°C	0,1-20 Hz	$E_{4PB}/E_{OBL} = 1,35$	modyfikowany

10. Literatura

- 1 PN-EN 12697-6:2008 Mieszanki mineralno-asfaltowe. Metody badań mieszanek mineralno-asfaltowych na gorąco. Część 6: Oznaczanie gęstości objętościowej próbek mieszanki mineralno-asfaltowej
- 2 PN-EN 12697-5:2008 Mieszanki mineralno-asfaltowe. Metody badań mieszanek mineralno-asfaltowych na gorąco. Część 5: Oznaczanie gęstości
- 3 PN-EN 12697-8:2008 Mieszanki mineralno-asfaltowe. Metody badań mieszanek mineralno-asfaltowych na gorąco. Część 8: Oznaczenie zawartości wolnej przestrzeni.
- 4 PN-EN 12697-12, Mieszanki mineralno-asfaltowe –Metody badań mieszanek mineralno-asfaltowych na gorąco – Część 12: Określenie wrażliwości próbek asfaltowych na działanie wody
- 5 PN-EN 12697-23, Mieszanki mineralno-asfaltowe –Metody badań mieszanek mineralno-asfaltowych na gorąco – Część 23: Określenie pośredniej wytrzymałości na rozciąganie próbek asfaltowych
- 6 PN-EN 12697-26, Mieszanki mineralno-asfaltowe Metody badań mieszanek mineralno-asfaltowych na gorąco Część 26: Sztywność
- 7 WT-2 Nawierzchnie Asfaltowe 2008, Nawierzchnie asfaltowe na drogach publicznych
- 8 Piłat J., Radziszewski P.: Nawierzchnie asfaltowe", WKiŁ 2004